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ABSTRACT

We use Langlands—Shahidi method and the observation that the local com-
ponents of residual automorphic representations are unitary representa-
tions, to study the Rankin—Selberg L-functions of GL X classical groups.
Especially we prove that L(s,¢ x 7) is holomorphic, except possibly at
s =0, %, 1, where o is a cuspidal representation of GL; which satisfies
weak Ramanujan property in the sense of Cogdell and Piatetski-Shapiro
and 7 is any generic cuspidal representation of SOg;41. Also we study the
twisted symmetric cube L-functions, twisted by cuspidal representations
of GL3.

Introduction

In this paper we use Langlands—Shahidi method [Sh1-3] and the following
observation to prove the holomorphy of several completed automorphic
L-functions which appear in constant terms of the Eisenstein series. Because
of the functional equation L(s,o,7) = €(s,a,7}L{1 — s,4,7), it is enough to es-
tablish the holomorphy for Res > 1.

OBSERVATION: The local components of residual automorphic representations
are unitary representations.

It was Speh [Sp] who applied this observation to prove that certain represen-
tations of GL,, are unitary. Tadic [Ta, Appendix] adopted her method. In their
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paper they used the global information to get local information. To the author’s
knowledge, this paper is the first to try to use the opposite direction, that is, to
use the local information on unitary representations to get information on the
location of poles of automorphic L-functions. Our results depend heavily on the
classification of unitary representations.

We apply the above observation to the following situation: We follow [Sh3]
and use the same notation. Let G be a quasi-split group over a number field
F and P = MN be a maximal parabolic subgroup. Let o be a cuspidal
representation of M and denote the residual spectrum attached to (M, o) by
L% (G(F)\G(A))(m,0)- We know that its constituents are 7 = ®m,, where 7,
is the “Langlands’ quotient” J(s,o,) of I(s,0,) for some s > 0 (only in the
case of tempered o, it is the usual Langlands’ quotient of I(s,0,)). We may
and will assume that the poles of Eisenstein series may be on the real axis by
normalizing ¢ so that the action of the maximal torus in the center of M at
the archimedean places is trivial (see section 1). Here I(s,0,) = I(s&,0,) =
Ind§ o, ® exp((s&, Hp( ))) is the induced representation (see section 1). The
poles of the Eisenstein series attached to (M, o) coincide with those of its con-
stant term which contains automorphic L-functions and the local normalized
intertwining operators. We can prove that the local normalized intertwining
operators are holomorphic and non-zero for Res > % So if the automorphic
L-function has a pole, then the residue of the Eisenstein series belongs to the
residual spectrum and thus each J(s,o,) is a unitary representation. In many
cases, which Langlands’ quotients are unitary has been determined. By look-
ing at when J(s,0,) is unitary for an appropriate local place (for example,
tempered o,,), we can find the information on the poles of the automorphic L-
functions. Here we should note the normalization in [Sh3] for &; for example, for
G = Spy,,, P = MN,M = GL,, I(s&,0,) = Ind$ (0, ® | det |*) ® 1. However, for
G = SOz, 11 0r SOgn, P = MN, M = GLy, I(sd,0,) = Ind§(c, ® | det |*/?) @ 1.
Notice s/2 instead of s. This is crucial in determining to which L-functions our
argument can be applied to prove the holomorphy for % <s< L

In [Ki-Sh]| we applied this method to the case when G is a split group of type
G4 over a number field and P = MN, M = GL;, where P is attached to the
long simple root. Ramakrishnan [Ram| showed that any cuspidal representa-
tion of GLs has at least one unramified tempered local component. Actually he
proves the much stronger result that more than 90% of unramified local compo-
nents of a cuspidal representation of GL; are tempered. Mui¢ [Mul] has given
us the classification of unitary representations of p-adic G2. When these results
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were combined with several other local and global results, in [Ki-Sh] we suc-
ceeded in proving that symmetric cube L-functions L(s, o, Sym3) are entire for
non-monomial representations. Actually we only need a weaker result that o
satisfies weak Ramanujan property in the sense of [Co-PS1] (see Definition 3.1).
It is known that a cuspidal representation of GLg, GL3 satisfies weak Ramanujan
property in the sense of [Co-PS1].

In this paper, we study the Rankin—Selberg L-functions for GL,, XxG,, where
G, 18 a split classical group, Sp,y,,, or SO2,,+1. We prove

THEOREM 0.1: Let G,, be a split classical group, Sps,,, or SO2y,11. Let o (7)
be a generic cuspidal representation of GL,, (Gn). Suppose ¢ satisfies weak
Ramanujan property in the sense of [Co-PS1]. Then
(1) The completed Rankin—-Selberg L-function L(s,o x T) is holomorphic for
Res > 1.
(2) Let Gy = SOgm41 (m > 1). Then the completed Rankin-Selberg L-

function L(s, o x T) is holomorphic except possibly at s = 0, %, 1.

We use the classification of unitary representations coming from unramified
principal series due to Yoshida [Yo]. The reason we get the definite result in the
case of SOz, is that there are no unitary representations if s > 7. In order
to prove that the local normalized intertwining operators are holomorphic and
non-zero for Res > %, we need to use standard module conjecture in these cases
proved in [Mu2] and also some global argument (see Lemma 3.3). The major
obstacle in the case of Sp,,, is that we do not know whether a generic cuspidal
representation of Sp,,, satisfies weak Ramanujan property. However, in the lower
rank cases such as GLg x SLg, we get the definite result.

There are limitations in our method. For example, we cannot prove the holo-
morphy of the exterior square L-function L(s,o,A?) for 0 < s < 1 for even
n and self-contragredient o because of normalization s/2 in the above. There
are unitary representations for 0 < s < 1. The same things happen with the
Rankin—Selberg L function of GL, x GL, when 01 ~ o, and the symmetric
square L-function L(s,o,Sym?).

Next we study the Rankin-Selberg L-function L(s, Ad*(x) x 7'), where m, '
are cuspidal representations of GLy and Ad3(n) = ®, Ad3(m,) is the adjoint cube
defined locally in [Sh6], except when 7, is an extraordinary supercuspidal rep-
resentation of -GLg(F,): If 7, is an extraordinary supercuspidal representation,
even though we do know whether Ad3(r,) exists, we can still define the local

L(s,00,m1) (see (4.1)). This will

L-function L(s, Ad*(m,) x ) as a quotient L(s.my X 7])
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be done by studying the case Ds — 2 in [Sh3]. The case Dy — 2 was done in
[Ki-Sh2], yielding the holomorphy of the completed Rankin triple L-functions of
GL2 x GL3 x GLy. We prove

THEOREM 0.2: Let n,n be two cuspidal representations of GLs. Then

L(s,Ad3(r) x n')L(s,m x ') is holomorphic except possibly at s = 0, 2L

In order to obtain the holomorphy of L(s, Ad®(w) x '), we need to prove that
L(s,mx ') does not have zeros for 2 < Res < 1. This is the so-called generalized
Riemann Hypothesis. However, in light of the converse theorem [Co-PS2], this
gives the strongest possible evidence for the existence of the adjoint cube lift
Ad3(r) for a cuspidal representation 7 of GL.

ACKNOWLEDGEMENT: We would like to thank Prof. F. Shahidi for his constant
help in explaining his results and for many discussions. Thanks are due to the
referee for many comments and corrections.

1. Preliminaries

Recall several facts and notations from [Ki3]: Let G be a quasi-split group over
a local field and P = MN is a maximal parabolic subgroup and let a be the
unique simple root in N. As in [Sh1], let & = (p,a)~! - p, where p is half the sum
of roots in N. We identify s € C with s&@ € a¢ and denote I(s,0) = I(sG,0) =
Ind% o ® exp((s@, Hp( ))).

Let A(sa,o,wg) be the standard intertwining operator from I(sé, o) into
I(wo(s&), wo(c)). Denote by M the L-group of M and let In be the Lie algebra
of the L-group of N. Let r be the adjoint action of M on In and decompose
r = .., i, with ordering as in [Sh1]. For each i, 1 < i < m, let L(s,o,7;)
be the local L-function defined in [Shl]. It is defined to agree completely with
Langlands definition of L-functions whenever there is a parametrization. In par-
ticular the L-function for arbitrary o is just the analytic continuation of the one
attached to the tempered inducing data through the product formula (cf. part 3
of Theorem 3.5 and equation 7.10 of [Sh1]). (See also Theorem 5.2 of [Sh2].)

Recall conjecture 7.1 of [Shi]:

CONJECTURE: Assume o, is tempered and generic. Then each L(s,o,,7;) is
holomorphic for Res > 0.

This conjecture is true for archimedean places [A].

PRrOPOSITION 1.1 ([Shl, p. 309]): Assume o, is tempered and generic.
(1) If m =1, L(s,0,,r) is holomorphic for Re s > 0.
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(2) If m = 2 and L(s,04,72) = [[;(1 — a;g,°)~", possibly an empty product
where each a; € C is of absolute value one (in particular if v is one-

dimensional, this holds), then L(s,0,,71) is holomorphic for Res > 0.

ProprosiTioON 1.2 ([Ca-Sh, p. 573]): If G is a quasi-split classical group, then
the conjecture holds.

Now let G be a quasi-split group over a number field F and P = MN be a
maximal parabolic subgroup. Let o be a cuspidal representation of M = M(A).
We may and will assume that the poles of Eisenstein series may be on the real
axis by assuming that o is trivial on A part of P(R), where P(R) = MYAN is
the Langlands decomposition. In the case of M = GL,,, we can identify the A
part of P(R) with F.f, where A% = I!- F} with I! ideles of norm 1. So in this
case the central character w, of ¢ is trivial on F}.

For f € I(s,0), let E(s, f,g, P) be the Eisenstein series attached to (M, o)
(see [Ki3] or [Sh3, section 2] for more details). Given a parabolic subgroup
Q) = MgNg, the constant term of E(s, f, g, P) along Ng is zero if Q # P and
Q # P'. If P is not self-conjugate, then

EN(S,f,g,P) = f(g)7 EN’(SafagaP) = M(s,a,wo)f(g).

If P is self-conjugate, then En(s, f, g, P) is a sum of the above two terms.
Here M (s,o,wp) is the standard intertwining operator from the global induced
representation I(s,o) to I(wgs,weo). Let M(s,o,wp) = ®,A(s,0,,wg). We
normalize the intertwining operator A(s,o,,wg) as follows:

A(S, U‘U”wO) = T(S, Uv,wﬂ)N(s, quwO)’

(1) risan ) = ][
i=1

L(is,0,,7;)
1+ iS, Oy, T’i)E(S, OyyTiy "/)v)

Let N(s,0,wp) = ®,N(s,0y,wo), 7(s,0,wg) =[], r(s, 00, wo) and e(s,0,7;) =
I1, (s, 00,74, %5). Then we have, for f € I(s,a),

M(S,O', wO)f = ’I"(S, g, UJQ)N(S, g, wO)fa

. (6,0,00) = ﬁ L(is,0,7;)
) s O, Wp) = 1 L(l.}_;‘s,g,ri)e(s,ﬂ,'f‘i).

=

Suppose we have the following:
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ASsUMPTION (A): N(s,o,,wp) is holomorphic and non-zero for Res > % for
any v.

Denote the image of N(s,0,,wg) by J(s,0,). If o, is tempered, it is the usual
Langlands’ quotient J(s, 0,) (see [Ca-Sh] for precise references). But if o, is non-
tempered, it is the Langlands’ quotient coming from lower parabolic subgroups.
Let J(s,0) = Q, J(s,00).

Let 0 = @, 0, be a unitary cuspidal representation of M. Then each o, is a
unitary representation.

OBSERVATION 1.3: Suppose we have Assumption (A). If r(s,o,wg) has
a pole, then J(s,0) = @,J(s,0,) belongs to the residual spectrum
Lgis(G(F)\G(A))(Mﬁ), and in particular, each J(s,0,) is unitary.

Let 0 = @ o, be a globally generic unitary cuspidal representation of M. Then
for all v, o, is generic and unitary. Suppose o, is non-tempered. The following
standard module conjecture is proved for various cases including GL,,. Especially
it is true for archimedean places due to Vogan [V]. In [Mu2], it is proved for Sp,,
and SO2,1 over non-archimedean places. In [Ca-Sh], it is proved for any quasi-
split group when 7y is supercuspidal.

STANDARD MODULE CONJECTURE: Given a non-tempered, generic o,, there is
a tempered data my and a complex parameter Ay which is in the corresponding

Ao, HY
positive Weyl chamber so that o, = Ipr, (Ao, mo) = Ind’}\f}'o (mo ® q: oMk )>).

Recall the following [Ki3, Lemma 2.4].

LEMMA 1.4: If s& + Ag is in the positive Weyl chamber for Res > % together

with standard module conjecture and conjecture 7.1 of [Shl], then Assumption
(A) holds.

Now we recall the technique in [Sh2] of showing that []i~, L(1 + is,0,7;) is
non-vanishing on Re s = 0.

Fix a non-trivial character ¥ = @ 1, of F\A. Then there is a natural generic
character x of U(F)\U(A) defined by 1. We again use x to denote x|y (a)nm(a)-
Then for any generic cuspidal representation o of M, by changing the splitting in

M we may assume that o is x-generic. Recall y-Fourier coefficient of E(s, f, g, P)
(Sh2]:

Ey(s, f,9,P) = / E(s, f,ug, P)(u) du.
U(FN\U(A)



Vol. 117, 2000 POLES OF L-FUNCTIONS 267

Since U(F)\U(A) is compact, the poles of E,(s, f,g, P) are among those of
E(s, f,g,P). For f =@, f» € I(s,0) and g = e = (e,), the identity element of
G(A), we have [Sh2]

E,(s, f,e,P) = H Wi, (s, ev) HLs(l +is,0,75) 7,
vgs i=1
where Wy, is the Whittaker model of I(s,0,). Then Wy, is holomorphic for
Res > 0 and non-vanishing (see [Sh2, Proposition 3.1]). Therefore, the zeros of
[T, Ls(1 + 4s,0,7;) are among the poles of the Eisenstein series E(s, f, g, P).
So we have

PROPOSITION 1.5 (Shahidi [Sh2]): If the Eisenstein series E(s, f,g,P) does
not have a pole at sg, ie., there is no residual spectrum at sg, then
[T~ Ls(1 +is,0,r;) has no zero at so.

Shahidi [Sh2] showed that [];-, Ls(1 + is,0,7;) is non-vanishing on Res = 0
by using the fact that E(s, f, g, P) is holomorphic on Res = 0.

COROLLARY 1.6 ([Ki3, Lemma 2.3]): If P is not self-conjugate or woo % o, the
Eisenstein series E(s, f,g, P) does not have a pole for Res > 0. Hence in these
cases, [ [, Ls(1 +1s,0,7;) has no zeros for Res > 0.

Remark 1.1: 'We should mention that in [Ki3|, “wgo = ¢” should be written as
“woo = 07, and “wgo # o7 as “wyo Z o”.

LEMMA 1.7 ([Zh]): Let o, be an irreducible tempered, generic representation of
M. Then if N(A,0,,wq) is holomorphic at Ag and conjecture 7.1 of [Sh1] holds,
then it is non-zero at Ag.

Proof: Let w; be a Weyl group element such that w;Ag is in the closure of the
positive Weyl chamber. Consider the cocycle relation N(wiAg, w10y, wow] 1) =
N(AO,ov,wo)N(wle,wlav,wl_l). Here N('wle,wlav,wgwfl) is holomorphic
and non-zero. Also N(w;Ag, w10y, w; ) and N(Ag, 0y, wp) are both holomorphic.
Therefore N(Ag, 0y, wp) cannot be zero. |

PROPOSITION 1.8: Let 0 = @), 0, be a unitary, generic cuspidal representation
of M. Assume standard module conjecture and conjecture 7.1 of [Shl] so that
Lemma 1.7 may be applied. Let S be a finite set of places, including all the
archimedean places, such that for every v ¢ S, o, is unramified. Suppose that
M (s,0,wq) is holomorphic for Res > 1, i.e., the Eisenstein series attached to o
n  Lg(is,o,r;)

is holomorphic for Res > 1. Suppose that the quotient [[;”, L(T_) is
S 18,0,T4
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holomorphic for Res > 1 and non-zero for Res > 1, and the local L-functions
L(s,04,7i), 2 < i < m, are holomorphic for Res > 1. Then for each v, the
normalized operator N(s,0,,wg) and the local L-function L(s,o,,71) are holo-
morphic for Res > 1.

Proof*: Take f = @, fo such that for each v ¢ S, f, is the unique K,-fixed
function normalized by f,(e,) = 1 and let f, be the K,-fixed function in the
space of I(—s,wg(0,)), normalized the same way. Then (1.2) can be written as
(see [Sh3, (2.7)])

(1.3) M(s,0,wo)f = H LLS(” ,0,73) )®fv®®A(s,av,wo)fu.

1+is,0,7
S + y O, T4 veS

We imitate the proof of [Sh3, Theorem 5.2]. Fix v € S, and normalize
A(s,04,wp). For each u € S, u # v, A(s, 0, wp) is not a zero operator. Pick fu,
u € S, u# v, so that A(s,ou,wo)fu # 0. Then the above equation is written as

m
Ls(is,o,r;) 15, Gv, i) f
M
(so"U)()f Hle—i-ZSU"'z HL(1+’LS Uv,'l'z)%fv@

N{(s,0,,w
Q) Als, 0w, w0) fu ® T E(S ; r§)¢ 3
u€S,uFv =1 yOuy My Yo

Now pick Ny > 1 so large that L(1 + s,0,,71) has no poles for Res > Np.
Then the normalized operator N(s,o,,wp) is holomorphic for Res > Ny — 1.
By Lemma 1.7, N(s,0,,wp) is non-vanishing for Res > Ny — 1. Then by our
assumptions, L(s, d,,71) has no poles for Res > Ny — 1. Arguing inductively, we
see that L(s,oy,71) has no poles for Res > 1. 1

Remark 1.2: It is possible to prove that modulo standard module conjecture
and conjecture 7.1 of [Sh1], the normalized intertwining operators N (s, oy, wo)
and the local L-functions L(s,oy,7;), are all holomorphic for Res > 1 for non-
archimedean v, without the assumption that the quotient [];-, #{"1%}3
is holomorphic for Res > 1 and non-zero for Res > 1: We only need that
M(s,0,wp) has only finitely many poles for Res > 0 and the quotient
e, %%:if—:’:%) has only finitely many poles and zeros for Res > 1. We do

this in a future work with Shahidi.

* Thanks are due to Prof. Shahidi who pointed out an error in an earlier version of
the proof.
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2. Some facts on unitary representations

In this section, we assume that F is a local field of characteristic 0. We restrict
ourselves to the case of split reductive groups. Let x be an unramified unitary
character of T and A € a* = X(T)r @ R and x’ = A ® x. Then the induced
representation I(A, x) = Ind§ x' is defined. It has the unique unramified irre-
ducible subquotients, denoted by m(A,x). Suppose A is in the closed positive
Weyl chamber and let A; = {a € A] Aoa” = 1}. Let P = M;N; be the
standard parabolic subgroup of G generated by the roots in A;. Let m; be the
unique irreducible spherical subrepresentation of Ind My X

THEOREM 2.1 ([Li, Theorem 2.2]): The following are equivalent:
(1) x' ca¥ #| | for any a,
(2) IndIG>1 A ® my is irreducible (hence equals w(A, x)),
(3) m(A,x) is generic.

PROPOSITION 2.2 ([Li, Lemma 2.3]): Let G be G be unramified reductive groups
over F, and let ¢: G > G be a central isogeny defined over F. Let B=TU
be a Borel F-subgroup of G and assume ¢ maps B, U,G(0) to B,T and G(0),
respectively. Let x be an unramified unitary character of T. Then we can define
a unitary character ¥ = ¢*(x) of T by x(f) = x(#(t)). Conversely, given any ¥,
there will be finitely many x such that x = ¢*(x). Then w(A, X) is unitary if and
only if m(A, x) is.

Recall the result of Yoshida on the classification of unitary unramified
representations.

THEOREM 2.3 ([Yo, Theorem BJ): Let G = SOg2,41. Let A = a1e1+- -+ apey,.
Assume I(A,x) is irreducible. Then it is unitarizable if and only if a;| < % for

i=1,...,n.

THEOREM 2.4 ([Yo, Theorem C]): Let G = Sp,,,. Let A = ayeq + -+ - + apen.
Assume I(A,x) is irreducible. Then if it is unitarizable, we have |a;| < 1 for

i=1,...,n.

THEOREM 2.5 ([Yo, Theorem 11.4]): Let G = SO2,. Let A = aje; + - +aney,.
Assume I(A, x) is irreducible. Then if it is unitarizable, we have a; — |an| < 1.

Yoshida’s result is not satisfactory for G = SOy,. In order to obtain a better
result, we need Shahidi’s result.

THEOREM 2.6 ([Sh3, Lemma 5.8]): Let MN C G be a maximal parabolic sub-
group of a quasi-split group over a number field. Let o, be a unramified local
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component of a cuspidal representation ¢ of M. Then for each r;, L(s,0,,7;) Is
holomorphic for Res > 1.

COROLLARY 2.7: Let o, be an unramified local component of a generic cuspidal
representation o of 8Osq,. Write it as 0, = w(A,x) for A = aje; + -+ + anen.
Then |a;| < 1 fori=1,...,n.

Proof: This is Corollary 5.4 of [Sh3], direct consequence of Theorem 2.6. |

COROLLARY 2.8: Let o (1) be a generic cuspidal representation of GLy (SOa141).
The L-function L(s,o x ) is absolutely convergent for Res > %

We recall a proposition from Muié¢ [Mul, Lemma 5.1].

PROPOSITION 2.9: Let G be any reductive F-group and P = M N its F-parabolic
subgroup. Denote by Unr(M) the group of unramified characters. For any irre-
ducible representation m of M and A € Unr(M), denote I(A,7) = IndE A @ .
(1) The set of A such that I{A, ) has unitary subquotients, is compact.
(2) Let m be a hermitian representation and I(0,n) be an irreducible unitary
representation. Then w is unitary.

We record here a useful lemma.

LEMMA 2.10: Let F be a local field of characteristic zero, archimedean or
non-archimedean. Let 01,09 be two discrete series representations of GLg, GLy,
respectively. Then the normalized intertwining operator N(s,o1 ® o2, wp) is
holomorphic and non-zero for Res > —1.

Proof: This is a special case of [M-W, proposition 1.10]. Or it follows from
[Ca-Sh] by noting that

(s+ 1,01 X 09)

L
N(s,01 ® 02, wp) = L(s,01 X 03)

A(S, o1 ® 02,'(1)0).

By [Ca-Sh, Theorem 6.2] for archimedean places and the well-known result of
Zelevinsky (Ze] for non-archimedean places, GLy, satisfies generalized injectivity

A
and thus, by [Ca-Sh, Theorem 5.1], (‘2&:10@) :2(;“)’0)
301 2

1.1, L(s,01 X 07) is holomorphic for Res > 0. |

is entire. By Proposition
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3. Rankin—Selberg L-functions for GL; xG|

Let G, = Spy,,, SOon4+1 or SOz,. Let MN C Gy be a maximal parabolic
subgroup with M = GL xG;. From the cases (B,), (Cy), and (D,, —1) in [Sh3],
we have the following decomposition of the adjoint representation of LM on Ln:

r=r1Ory

where

if G = Spy,, (7’2:0ifk?:1), 1 :pk®pgg1, ) :/\2pk,

Sp 2 .
N =pr®py, To=Sym pg, ifl>1
if G = SOgny1, { 1= Pr W Py 2 ym: pg

r=nr :Smepk, if =0,
. ™ :Pk®P§lo, 7'2_—'/\2Pk, 1fl24
lfG:SOQn, 2 .

r =711 = N“pg, if I =0.

Here py. is the standard representation of GL(C), pglp is the standard represen-
tation of Spy(C), p5; is the standard representation of SO9111(C), and pSP is
the standard representation of SO (C).

Recall the following definition from [Co-PS1].

Definition 3.1: Let 7 be an automorphic representation. We say that 7 satisfies
weak Ramanujan property if there exists an infinite sequence of places v, such
that
(1) the local components 7, are unramified with Satake eigenvalues {),,_ ;}
and
(2) for every € > 0 we have max;{| A, i|,|A\; 2|} = O(q;,,)-

Um, i

It is known that a cuspidal representation of GLj, GL3 satisfies the weak
Ramanujan property.

THEOREM 3.1: Let MN C SOgz,41 or SOg,, M = GL,,. Let o be a unitary
cuspidal representation of GL,,.

(1) If o is not self-contragredient, then the completed L-function L(s,o,Sym?)
and L(s,a,A?) have no zeros for Res > 1 and are entire.

(2) If o is self-contragredient, then L(s,0c ® w,Sym?) and L(s,0 ® w,A?)
have no zeros for Res > 1 and are entire, where w is any non-quadratic
grossencharacter of F. (If n is odd, then L(s,0,A?) is entire and has no
zeros for Res > 1 [Ki3].)

(3) For all v, non-archimedean or archimedean, the local L-functions
L(s,0,,Sym?) and L(s,0,,A?) are holomorphic for Re s > 1.
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(4) Suppose o is self-contragredient and satisfies weak Ramanujan property.
Then the completed L-functions L(s, o, Sym?) and L(s, o, A?) are holomor-
phic for s > 1.

Proof: Note that wy(c) = 6. Let ¢/ = o if o is not self-contragredient and
¢’ = oQ®u if ¢ is self-contragredient, where w is a non-quadratic grossencharacter.
Then by Corollary 1.6, the partial L-functions Lg(s, o', Sym?®) and Lg(s,o’, A%)
have no zeros for Res > 1.

Consider (1.3). Since ¢’ is not self-contragredient, M (s, o', wq) is holomorphic
for Res > 0. Since the unnormalized operators A(s, o), wg) are non-zero oper-
ators, we conclude that the partial L-function Lg(s,o’,Sym?) and Lg(s,0a’, A?)
are holomorphic for Res > 0. Proposition 1.8 implies that each local L-function
L(s,o’,Sym?) and L(s,o’,A?) are holomorphic for Res > 1. If ¢ is self-
contragredient, given a place v, take a non-quadratic grossencharacter w so that
wy = 1. Then (3) follows.

In order to prove the statements about the completed L-functions in (1) and
(2), note that Assumption (A) holds in these cases, i.e., N(s,0,,wo) is holo-
morphic and non-zero for Res > 1 for all v ([Ki3, Proposition 3.4]). Hence in
(12) L(.s,a’,Symz)2 and L(s,a’,A?)

L(1 + s,07,Sym*) L(1+s,0',A2) 1

fore L(s,o’,Sym?) and L(s,c’,A?) are holomorphic for s > 5. We apply the

are holomorphic for s > 3. There-

functional equations.
In order to prove (4), let o, be an unramified local component. Then

0y =IndS" (1| | @ - Q|| @ ® - QU ® ] [T ® - @ | [T,
I(s,0,) =Ind§ (1] 37 @ @ pe| |37 Qv @ @1 ® pir| |37

®- @ | |#70).

From the weak Ramanujan property of cuspidal representations of GL,,, given
Resg > 1, we can find a local component o, such that Resy — 2a; > 1. Then
by Theorem 2.1, I(s,0,) is irreducible for all Res > Resp, hence it cannot
be unitary. So by Observation 1.3, there is no residual spectrum for Res >
1. Consider (1.3). Since the unnormalized operators A(s,o,,wp) are non-zero
operators and Lg(s,0,Sym?) and Lg(s,0,A?) are holomorphic for Res > 2 by
[Sh3, Theorem 5.1], Ls(s,o,Sym?) and Ls(s, o, A?) are holomorphic for Res > 1.
We apply (3). |

Remark 3.1: The holomorphy and non-vanishing of L(s,o,Sym?) and
L(s,0,A?) for Res > 1 follow immediately from the absolute convergence of the
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two L-functions for Res > 1. D. Bump and D. Ginzburg proved that the partial
L-function Lg(s,o,Sym?) is holomorphic except possibly at s = 1. (Symmetric
square L-functions on GL(r), Annals of Mathematics 136 (1992), 137-205.)

THEOREM 3.2: Let MN C Ggqy, M = GLi xG with | # 0 and G; = Spy;, or
SOqiy1. Let o (7) be a unitary, generic cuspidal representation of GLy (G;).
(1) If o is not self-contragredient, then the completed L-function L(s,0 X T)
has no zeros for Res > 1 and is holomorphic for s > 1.
(2) Ifo is self-contragredient, then L{s, (c®w)x 1) has no zeros for Re s > 1 and
is holomorphic for s > 1, where w is any non-quadratic grossencharacter of
F.
(3) For all v, non-archimedean or archimedean, the local L-function
L(s,0, X 7,) is holomorphic for Re(s) > 1.
(4) Suppose o is self-contragredient and satisfies weak Ramanujan property.
Then the completed L-functions L(s, o x 1) are holomorphic for s > 1.

Proof: Note that wo(c®7) = §®7. Let ¢’ = o if 0 is not self-contragredient and
o' = oQ®u if o is self-contragredient, where w is a non-quadratic gréssencharacter.
Then by Corollary 1.6, the partial L-functions Lg(s, o’ x 7) has no zeros for Res >
1, since the partial L-functions Ls(s, o', Sym?) and Lg(s, o’, A?) are holomorphic
for Res > 0 (Theorem 3.1).

Consider {1.3). Since ¢’ is not self-contragredient, M{s, o’ x 7,wyg) is holomor-
phic for Res > 0. Since the unnormalized operators A(s, o), wg) are non-zero
operators and Ls(s,a’,Symz) and Lg(s,0’,A?) have no zeros for Res > 1, we
conclude that the partial L-function Ls(s,0’ x 7) is holomorphic for Res > 1.

Now we apply Proposition 1.8 to ¢’ ® 7. Standard module conjecture and
conjecture 7.1 of [Shl] are proved in [Mu2], [V] and [Ca-Sh]. Hence Proposition
1.8 implies that each local L-function L(s, o}, x 7,,) is holomorphic for Res > 1. If
o is self-contragredient, given a place v, take a non-quadratic grossencharacter w
so that w, = 1. Then (3) follows and so do the statements about the completed
L-functions in (1) and (2).

In order to prove (4), let ¢, ® 7, be an unramified local component. Then 7,
is a component of Ind§! (m| |** ®---®m| |t). Then I(s,0, ®T,) is a component
of Indg (p1l "**1 @+ @ pir| I @[ @ v P @i 70 @+ pua| P @
m| [Pt ®---®mn| |?). Applying the same technique as in Theorem 3.1, we see
that weak Ramanujan property and Theorems 2.3 and 2.4 imply that the partial
L-functions Lg(s,o x 7) is holomorphic for Res > 1. We apply (3). |

In the following let G,, = Sp,,, or SO2,41. Let ¢ (7) be a unitary cuspidal
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representation of GLy (G = Spy, or SOg141, [ # 0). By standard module conjec-
ture proved in {Mu2] for non-archimedean places and [V] for archimedean places,
non-tempered unitary representations a,, 7, of GLg and G, resp. can be written
as follows:

o, =Ind(|det|*'01 ® --- ® | det |*P0, ® 0py1 @ |det |20, @ - Q@ |det | " ay)

and
7 = Ind(|det |P*1y @ - - - ® | det [Pe7, ® 7o),

where 0 < ap < -+ < a1 < %, 0< By < -+ <P, and oy’s, 75, i = 1,...,q, are
tempered representations of GL, 7y is a tempered representation of G,. Then

(3.1) I(s,0,®7,) =Ind (|det|*t*'5, ® .- ® |det |*T** 0, ® |det |°0p11®
|det |*~*0, @ -+ ® | det |* ™oy ®@ |det [Py ® -+ - ® | det [P 7, ® 70).

LeMMA 3.3: Let o (7) be a cuspidal representation of GLy (G = Spg; or SO2;4.1)
and o, and T, be as above. Then (8, < 1.

Proof: We write 7, = Ind(}det | p; ® --- ® |det |* p, ® po), Where p1,...,p,
are discrete series representations of GL,,, ¢ = 1,... ,r and pp is a tempered
representation of G, and 0 < a, <--- < a3.

If v is non-archimedean, by [Ro, Proposition 5.15], there exists a cuspidal
representation m of GL,, such that m, = p;. By Theorem 3.2, L(s,m, X 7y)
is holomorphic for Res > 1. However, L(s,m, X 7,) contains a factor
L(s — a1, p1 x p1) which has a pole at s — a1 = 0. It follows a; < L.

Next let v be an archimedean place. A discrete series for GL,, exists only
for GL;(R),GL{(C) and GL3(R). Given a unitary character p for GL,(F,),
F, = R, C, there exists a grossencharacter y of F such that u, = p. By Jacquet-
Langlands correspondence [Ja-La], given a discrete series p of GLy(F,), F, =R,
there exists a cuspidal representation 7 of GLq such that 7, = p. Proceeding as
in non-archimedean case, we obtain the result. ]

PROPOSITION 3.4: Assumption (A) holds in these cases, ie., for all v,
N(s,0, ® T,,wy) is holomorphic and non-zero for Res > %

Proof: By Lemma 3.3, §; < 1 and thus in (3.1), Re(s—a1 — 1) > —1for Res >
%. The rank-one operators are either operators for the case GLg X GL; C GLgy
or GL; C G;. The operator for the case GLy x GL; C GLgy; is holomorphic for
Res > % by Lemma 2.10. For the operator for the case GL; C Gy, we proceed
as in [Ki3, Proposition 3.3, 3.4]. Hence N(s, 0y, wo) is holomorphic for Res > 1.
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Applying Lemma 1.7 to (3.1), we see that N(s, oy, wp) is non-zero for Res >
| |

1
3

We look at a special case: G = SOzp41, MN C SOg2p,41, M = GLg x SOg14,
k + 1 =n. In this case, we can get the definite result due to Theorem 2.3.

THEOREM 3.5: Let o (7) be a generic cuspidal representation of GL,, (SO2n41).
Suppose that o satisfies weak Ramanujan property. Then the Rankin-Selberg
L-function L(s,o x 7) is holomorphic except possibly at s = 0, %, 1.

Proof: 1If s > 1, L(s,0 x 1) is holomorphic by Theorem 3.2. Given § < s < 1,
from weak Ramanujan property of cuspidal representations of GL,,, we can find
an unramified component o, ® 7, such that s — a; > %, s+ oy < 1. Since 7,
is unitary and unramified, by Theorem 2.3, 8; < % Then from Theorem 2.1,
I(s,0, ® 7,) is irreducible, and hence is not unitary by Theorem 2.3. Therefore,
L(s,0 x 7)L(2s, 0,Sym?) is holomorphic except possibly at s = %, 1if s > 0; no
poles if o is not self-contragredient. Here L(s,o,Sym?) has no zeros for Res >
3; on the line, Res = 1, it follows from Prop. 1.5. For Res > 3, consider
L(2s,0 x 0) = L(2s,0,Sym?)L(2s, 0, A?) and apply Theorem 3.1 (4) and the fact
that L(2s,0 x o) has no zeros for Res > 1. ]

For G = Sp,,, or 8O3, we do not have a precise result. For SOy, we do not
even have standard module conjecture for ramified places.

LEMMA 3.6: Let p1,...,un be unitary local unramified characters of F* and
let m = Ind(g,L’c (1 @ --- ® pug). We assume that k > 2 and m, has the trivial
central character, i.e., ui---ur = 1. Let my be the unique generic component
of Indgl(‘uk-}_l ® :+ ® pn), where G = Spy;,S809;. Then if s > %, s # 1,
1= Indgi,c x@, (| det|°m1 ® m2) is irreducible and is not unitary.

Proof: By Theorem 2.1, if s > %, s # 1, I is irreducible. Therefore I cannot be
unitary for s > 1. Suppose % < s < 1 and I is unitary. Note that I is hermitian
if and only if m; ~ 71 and =3 is fixed by c¢,, the sign change when k is odd and
G =8504. Since my ~ 7y and gy - pg =1, p; = yj_l for i # j. We assume that
Bl =y 1. Then

I:Indg’;xmxpxxcl(! Pr1® - | °ur @ma)
2Indfy e, (| P @ [T m ® | [Pua- - ® | |*pk @ en(m2))
~IndGt, «q,_, (| 1m0, ] [7°4)®

Gn_ s
IndFXX2~~~><FxXG,(| IPua ® - ® | |°p ® en(m2)))-
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Therefore, by Proposition 2.9, w(] |*u1,| |7%u1) is unitary. However, it is not
unitary for s > 1. |

Recall the definition of density from [Ram)].

Definition 3.2: Let S be a set of primes in a number field F. Then the upper
(resp. lower) Dirichlet density of S is given by

I i EvGS q;S T EvES q;—s
(5(5) = 31_1)1{1'*- —m (resp. é(S) = sl_l)_l’_:i —'m)

One says that S has a density, denoted by §(S), when the upper and lower
densities are equal. For example, when S is the set of all but a finite number
of primes, it has a density with §(S) = 1. Note that if X = SUT is a disjoint
partition of sets of primes, then §(S) > §(X) — 6(7T).

Let 7 = @, 7v be a generic cuspidal representation of Spy. We need a
condition that is a little stronger than weak Ramanujan property, i.e., given
€ > 0, the set of primes such that max;{|X\u|,|A;;'|} > ¢) has density zero,
where {\,;,7 = 1,...,n} is Satake eigenvalues of 7, for unramified places.

THEOREM 3.7: Let o (7) be a generic cuspidal representation of GL; (G, =
Sp,;). Suppose o and T satisfy the above condition. Then the completed L-
function L(s,o X 1) is holomorphic except possibly at s = 0, %, 1.

Proof: First of all, we prove that if L(s,0 X 7) has a pole for s > %, then
w2 = 1, where w, is the central character of o: By Proposition 3.4, N(s, 0., wq)
is holomorphic and non-zero for Res > % for all v. So by Observation 1.3, if
L(s,0 x 7) has a pole for s > %, then the residual automorphic representation
J(s,001) =Q, J(s,0,®7y) is unitary. By assumption, in (3.1), I(s,0, ®7,) is
an induced representation in the closure of the positive Weyl chamber except for
places of density zero. Then in order that J(s, o, ® 7,) be unitary, J(s, o, ® 7,)

should be hermitian and therefore, w? = 1, especially for places of lower density>

oy
-;—. So by Hecke’s theorem [cf. Ki-Sh], w? = 1. Or this follows immediately from
the fact that if w? # 1, then wo(o ® 7) 2 0 ® 7, and hence the Eisenstein series
attached to o ® 7 is holomorphic for s > 0.

Then w,, = 1 for places of density % By Lemma 3.6, if 0, ® 7, is tempered,
J(s,0, ® 7,) cannot be unitary for s > %, s # 1. However, by Proposition 2.9,
it cannot be unitary for non-tempered o, ® 7, with Satake parameter |A, ;| < ¢
for some € > 0. By assumption, it is the case except for places of density zero.

Therefore L(s,0 x T) cannot have a pole for s > 1, s # 1. We apply the
functional equation. |
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COROLLARY 3.8: The completed L-function L{s,0 x 1) of GlLg xSLy is
holomorphic except possibly at s =0, 1, 1.

Proof: Let 7 = @, m, be a cuspidal representation of GL; and {a,,(,} be a
Satake parameter of 7, for unramified places. Then by [Ram, Lemma 3.1], given
€ > 0, the set of primes such that |a, + B,] > ¢ has density zero. Note that if
T, is tempered, |, + 3| < 2. If m, is non-tempered, then |a, + 8,| = ¢} + g, "
for some 0 < 1 < % Hence the condition in Theorem 3.7 is satisfied. [ |

4. Rankin-Selberg L-function L(s, Ad*(7) x 7')

Let 7 = @, 7, be a cuspidal representation of GL;. Then we can define the
local adjoint cube lift of 7, [Sh6, section 3], except when 7, is an extraordinary
supercuspidal representation. More specifically, ¥, = Ad*(r,) is an admissible
representation of GL4(F,) such that
(1) if v is archimedean, then ¥, is an irreducible admissible representation of
GL4(F,) attached to Ad®op: W — GL4(C), where p: Wi —s GLy(C)
is the homomorphism attached to m,;
(2) if v is non-archimedean and 7, = 7(u, v), where u, v are unitary characters
of FX, then 3, = IndgL“(F“)(u?l/_1 Queveutv?);
(3) if v is non-archimedean and m, = w(y| |",u| |7"), where p is a unitary
characters of F) and 0 < r < I,
Ind3" ) (] P @ ul I @ 4l |77 @l 1727);
(4) if v is non-archimedean and m, is special, i.e., m, = o(p| |2,p| |72).

then ¥, is a unique quotient of

Then X, is a unique square integrable constituent of
Ind5F (ul B @pul Feul "t oul7});

(5) if v is non-archimedean and =, is a non-extraordinary supercuspidal rep-
resentation, then m, = w(x), where 7(x) is the representation of the local
Weil group induced from y, a character of K, [K,, : F,] = 2. Let 5 be the
quadratic character attached to K, /F, by class field theory. Let x' be the
conjugate of x by the action of the nontrivial element of the Galois group.
Then X, is the induced representation Indgiz(f 'ng 703X N ® (7(x) ®1);

(6) if v is non-archimedean and 7, is an extraordinary supercuspidal represen-
tation and admits a lift X,, then ¥, is either supercuspidal or is a con-
stituent of a representation induced from a supercuspidal representation of
GLZ(Fv) X GL?(Fv)'

Our ultimate goal is to prove that even for an extraordinary supercuspidal

representation m,, we can define the adjoint cube lift £, = Ad*(w,) and & =
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®, X, is an automorphic cuspidal representation of GL4 if 7 is not mono-
mial. In order to apply the converse theorem [Co-PS2], we need to consider the
Rankin-Selberg L-function L(s, Ad*(r) x #’) for a cuspidal representation 7’
of GL,. If 7, is an extraordinary supercuspidal representation, even if we do not
know whether the adjoint cube lift exists, we can still define the local L-function
L(s,Ad*(m,) x 7!) as a quotient Zl%rl%) in (4.1).

We have to divide into two cases: 7 is monomial or not.

First, we suppose 7 is a monomial cuspidal representation, i.e., T®n ~ 7
for a nontrivial grossencharacter 7. Then n? = 1 and 7 determines a quadratic
extension F/F. According to [L-La], there is a grossencharacter x of E such that
7 = m(x), where 7(x) is the automorphic representation whose local factor at v
is the one attached to the representation of the local Weil group induced from
X». Let x’ be the conjugate of x by the action of the nontrivial element of the
Galois group. Then the Gelbart-Jacquet lift (adjoint square) of 7 is given by

I = Indgp? Y, (O ™) © ).

There are two cases:

CASE 1: Xx’—l factors through the norm, i.e., X't = flo Ng,p for a grossen-
character 7 of F. Then w(Xx’—l) is not cuspidal. In fact, W(Xx"l) = 7(f,7m).
In this case,

L(s,Ad3(7r) x ')y = L(s,(f®m) x ') L(s, (@ 7) x n').

Therefore, L(s, Ad®*(w) x #') is holomorphic except possibly at s = 0,1. It has a
poleat s=1when #' =fj®mor fn @ 7.

CASE 2: xx' ' does not factor through the norm. In this case, m(xx’ NHisa
cuspidal representation. Then

L(s,Ad*(x) x n') = Lis,x(xx' ") x m x ).

By Proposition 3.10, 3.11 of [Ki-Sh2], the above triple L-function is holomorphic
except possibly at s = 0,1. It has a pole at s = 1 when 7’ = 7(x~2x').

Next we assume that 7 is not monomial. Let II be the adjoint square (Gelbart—
Jacquet lift) of 7. It is a cuspidal representation of GL3 since 7 is not monomial.

Let G = Spin(2n) be a split spin group and

0= {al = €] —€2,..,0n-2 = €3 " €p-2,Qn_-1 = E€n_1 — €n,0n =€n_1 + en}-
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Let T C My = M be the Levi subgroup of G generated by 6 and let P = MN
be the corresponding standard parabolic subgroup of G. Then the standard
calculation (cf. [Sh4]) shows that

M = (GL1 X SLn_2 X SL2 X SLQ)/R,

where
{Ho, (t) Hoy(t2) -+ Hay (") Ho,, ("5 ) Ha, (77 ) 1 772 = 1}
R— if n even,
B {Hal (t2)Ha2 (t4) e Han—z (t2(n—2))Han_1 (tn_z)Han (tn_Q) : t2(n_2) = 1}
if n odd.

Let w, 7' be two cuspidal representations of GL, and II be a cuspidal repre-
sentation of GL,_3. Let 7y (resp. ) denote a constituent of g, (ar) (resp.
T|sLy(ar))- Let Ilp be a constituent of gy, (ap). If w and w' are central char-
acters of 7 and ', then o = (Il ® ww') @ 7y ® 7y can be considered as a
representation of M(Ar). Here we need to impose a condition that if n is odd,
IT has the trivial central character. This is the case D, — 2 in [Sh2]. The case
n = 4 was treated in [Ki-Sh2}, yielding the holomorphy of the completed Rankin
triple L-functions of GLg x GLg x GLs.

We will look at the case when n = 5. When we take II to be the Gelbart—
Jacquet lift of 7, we obtain the L-function L(s, Ad®(7) x n'). More precisely, let
G = Spin(10). Then we have the identification M ~ (GL3 x SLy x SLg)/{£1},
where —1 = (—I3,—I3,—I5). Then 0 = (I ® ww’) ® mp ® 7, is a cuspidal
representation of M(A). Then by [Sh7, Theorem 8.2],

(4.1) L(s,0y,71) = L(s, Ad*(m,) x 7' )L(s,my x 7)),
L(s,04,72) = L(5,TL,, A* ® w,w)).

We can prove them by direct computation for unramified places. For ramified
places, we define the L-function L(s,0,,71) as in [Shl, section 7]. Recall that
it is defined to agree completely with Langlands’ definition of L-functions when-
ever there is a parametrization. We define L(s, Ad®(r,) x 7’) to be Lls.oyin)

L(symyxml)®
Therefore if Ad®(,,) exists (i.e., except for extraordinary supercuspidal represen-
tations), L(s;Ad%(m,) x 7.} is a local Rankin-Selberg L-function for GL4 x GLs.
Using this, Shahidi proved
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PropPosITION 4.1 ([Sh7, Theorem 8.2]): Let S be a finite set of places
including all archimedean places such that =, is spherical for v ¢ S. Then
Lg(s,Ad®(n) x ©') has a meromorphic continuation to all of C.

Now we prove

PROPOSITION 4.2: The normalized intertwining operator N(s,o,,wq) Is
holomorphic and non-zero for Res > %

Proof: If I, tempered, in the language of Lemma 1.4, s& + Ay is in the positive
Weyl chamber for Res > 1 since if m, = m(p| [, p| |7), then r < 1 by [Ge-Ja].
Hence it is enough to check conjecture 7.1 of [Shl]: If I, is not supercuspidal,
then in (4.1), the L-functions are L-functions of GL; x GL; and hence conjecture
7.1 of [Sh1] is satisfied. If II, is supercuspidal, then

L(s,0y,72) = L(s, Ty, A% @ wyw))

is of the form J[,(1 — a;jg; %)™ ([Shl, Proposition 7.3]) and Proposition 1.1
applies.

Suppose II, is non-tempered. Then II, = IndgLB (u} |* @ v ® p| |7%), where
i, v are unitary characters and 0 < a < 1. Suppose m, = w(u| |", 4} |7") and
wl o= w7 ] TT), 0 < <L IfRes> 3% s—a—(r+7) > -1,
s—a—(r—r') > —1 and s—2; > 0. The rank-one operators are either operators
for SLy or GLg and hence they are holomorphic and non-zero. Suppose 7, or
ml is tempered. If both of them are tempered, in the language of Lemma 1.4,
8@ + Ag is in the positive Weyl chamber for Res > % and the rank-one operators
are in the situation of Proposition 1.1. Now suppose 7, is non-tempered and =,
is tempered. The only rank-one operators left to do are for a maximal Levi which
is isogenous to GL; x SL; inside a group whose derived group is SL3, in which
case Lemma 2.10 applies, or to GL; x SLy inside a group who se derived group
is Spin(6), in which case Proposition 1.1 applies.

By Lemma 1.7, the holomorphy of N(s,a,,wp) for Res > % implies the non-
vanishing of N(s,o0,,wp) for Res > %, since the standard module conjecture is
valid for o, and we checked conjecture 7.1 of {Sh1] above in our case. |

LEMMA 4.3: Let 71,7, be two cuspidal representations of GLs. Let S be the set
of places where my,, o, are all tempered. Then §(S) > %.

Proof: Let S; be the set of places where 7;, is tempered for ¢ = 1,2,3. Then
from [Ram], §(S;) > & for i = 1,2,3. Let X be the set of all places. Then
5(31 - 52) < S(X -5 < % We have §; = (S1 N S2) U (51 — Sz). So

(S1NSe) >8(81)-8(S1-8) > -EH=32. |
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PROPOSITION 4.4: The Eisenstein series attached to (M, o) is holomorphic for
Res > 0 unless (ww')? = 1.

Proof: Note that woo 2 o if and only if (ww')? = 1. Hence our proposition
follows from Corollary 1.6. |

PROPOSITION 4.5: L(s,0,713) = L(s,II, A2 ® ww’) has no zeros for Res > 1.
Proof: If (ww')? # 1, then by Proposition 4.4, the Eisenstein series, hence
M{(s,0,wp), is holomorphic for Res > 0. Then by Corollary 1.6,

Ls(1+s,0,m1)Ls(1+ 2s,0,72)

has no zeros for Res > 0. Consider (1.3}). Since the unnormalized operators
A(s,0,,wp) are non-zero operators, it follows that

Ls(s,0,71)Ls(2s,0,12)
Ls(1+s,0,m1)Ls(1 +2s,0,72)

is holomorphic for Res > 0. By [Sh3, Theorem 5.1} (the restriction has been
removed in [Shl]), Lg(s,0,7;), ¢ = 1,2, are holomorphic and non-zero for Res >
2. This implies that Lg(s,0,71)Ls(2s,0,7r2) is holomorphic for Res > 1, hence
Ls(s,0,71) is holomorphic for Res > 1. Therefore, Lg(1+ 2s,0,72) has no zeros
for Res > 0. Our assertion follows.

Suppose (ww')? = 1. If ww' = 1, then our result follows from Theorem 3.1.
Let ww' # 1. We give a proof, following [Sh4, Proposition 3.2]. Let E/F be
the quadratic extension attached to ww’ and let ¥ be the base change lift of II
defined by Arthur and Clozel [A-C]. Then

Ls(5,%,A%) = Lg(s,II,A?)Ls(s, T, A? ® ww').

By [Sh4, Proposition 3.2], ¥ is cuspidal. Then the left-hand side is non-vanishing
for Res > 1 by Corollary 1.6 and Lg(s,II, A2) is holomorphic for Res > 0 by
Theorem 3.1. Hence Lg(s, I, A? ® ww’) is non-vanishing for Res > 1. |

THEOREM 4.6: L(s,Ad*(m) x 7')L(s, 7 x 7' is holomorphic except possibly at
§=0,2,1.

Proof: By Proposition 4.4, if (ww')?® # 1, then M(s,o,wp) is holomorphic
for Res > 0. Consider (1.2). By Proposition 4.2, the normalized operators
N(s,0,,wp) have no zeros for Res > 1. Hence L(lL gz::gégig;;)r?) is holomor-
phic for s > % Pick Ny so large that L(1+s,0,71)L(1+2s,0,73) is holomorphic
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for s > Ny. Then L(s,o,71)L(2s,0,72) is holomorphic for s > Ny — 1. Argu-
ing inductively, we see that L(s,o,71)L(2s,,72) is holomorphic for s > 3. By
Proposition 4.5, L(2s,0,72) has no zeros for Res > % By [Sh4, Proposition
3.1], L(2s,0,7r2) has no zeros for Res = % Hence L(s,0,71) is holomorphic for

Res > %, except possibly at s = % By the functional equation, we see that

L(s,0,r1) is holomorphic, except possibly at s = %

Suppose (ww')> = 1. Then wyw, = 1 for places of density ;. By Lemma
4.3, there exists a place where both =, and =] are unramified, tempered, and
wywh = 1. Let m, = n(p,v) and 7, = #(¢/,v’). Then w, = pv and !, = p'v/'
and II, = w(ur~1,1, p~'v). Then under the isogeny Spin(10) — SOy, I(s, 0,)
corresponds to an induced representation

Ind%%;ox SO, (‘ det ls7r1 ® 7r2),

where 7 = Ind§™* (m ®n2 ®n3), 1} = wewip?v =2, N3 = wwl, N = wywhp~ 22,
and 7y is the unique generic component of Indséo“ (na ® ns), N3 = pv~1u'v/! -1
ng = u oy’ ~!_ Note that m; has the trivial central character. By Lemma 3.6,
J(s,0,) is not unitary if s > 3, s # 1. Therefore L(s,Ad*(7) x 7')L(s,7 x ')
cannot have a pole for s > %, s # 1. We now apply the functional equation.
|

y

CONJECTURE 4.7: L(s,Ad3(r) x 7') is holomorphic at s = 1.

CONJECTURE 4.8: L(s,Ad3(n) x n') is entire if © is not monomial.
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