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A B S T R A C T  

We use Langlands Shahidi method and the observation that the local com- 
ponents of residual automorphic representations are unitary representa- 
tions, to study the Rankin-Selberg L-functions of GLk x classical groups. 
Especially we prove that L(s,a × T) is holomorphic, except possibly at 

1 s = 0, 3' 1, where a is a cuspidal representation of GLk which satisfies 
weak Ramanujan property in the sense of Cogdell and Piatetski-Shapiro 
and T is any generic cuspidat representation of SO2~+~. Also we study the 
twisted symmetric cube L-functions, twisted by cuspidal representations 
of GL2. 

I n t r o d u c t i o n  

In this paper  we use Langlands-Shah id i  method  [Shl-3] and the following 

observat ion to prove the holomorphy of several completed automorphic  

L-funct ions  which appear  in constant  terms of the Eisenstein series. Because 

of the  funct ional  equat ion  L(s,  a, r) = e(s, a, r)L(1 - s, ~, r),  it is enough to es- 

tabl ish  the holomorphy for Re s > ! 
- -  2 "  

OBSERVATION: The  local components  o f  residual automorphic  representations 

are unitary representations. 

It  was Speh [Sp] who applied this observation to prove tha t  cer ta in  represen- 

ta t ions  of GLn are unitary.  Tadic [Ta, Appendix] adopted her method.  In  their  
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paper they used the global information to get local information. To the author's 

knowledge, this paper is the first to try to use the opposite direction, that  is, to 

use the local information on unitary representations to get information on the 

location of poles of automorphic L-functions. Our results depend heavily on the 

classification of unitary representations. 

We apply the above observation to the following situation: We follow [Sh3] 

and use the same notation. Let G be a quasi-split group over a number field 

F and P = M N  be a maximal parabolic subgroup. Let a be a cuspidal 

representation of M and denote the residual spectrum attached to (M, a) by 

L2dis(G(F)\G(A))(M,~). We know that its constituents are Iv = ®Try, where 7~v 

is the "Langlands' quotient" J(s, av) of I(s, av) for some s > 0 (only in the 

case of tempered a . ,  it is the usual Langlands' quotient of I(s, a,)). We may 

and will assume that the poles of Eisenstein series may be on the real axis by 

normalizing ~ so that the action of the maximal torus in the center of M at 

the archimedean places is trivial (see section 1). Here I(s, av) =- I(s&,av) = 
Ind~ a~ ® exp((s&, Hp() ) )  is the induced representation (see section 1). The 

poles of the Eisenstein series attached to (M, a) coincide with those of its con- 

stant term which contains automorphic L-functions and the local normalized 

intertwining operators. We can prove that  the local normalized intertwining 

operators are holomorphic and non-zero for Re s > 1. So if the automorphic 

L-function has a pole, then the residue of the Eisenstein series belongs to the 

residual spectrum and thus each J(s, a~) is a unitary representation. In many 

cases, which Langlands' quotients are unitary has been determined. By look- 

ing at when J(s ,a,)  is unitary for an appropriate local place (for example, 

tempered av), we can find the information on the poles of the automorphic L- 

functions. Here we should note the normalization in [Sh3] for &; for example, for 

G = SP2n, P -- MN, M = GLn, I(s&, 0,)  = IndpC(a~ ® I det 18) ® 1. However, for 

G -- S02n+1 or S02~, P -- MN, M = GLn, I(s&, a~) = IndpC(¢, ® I det 18/2) ® 1. 

Notice s/2 instead of s. This is crucial in determining to which L-functions our 

argument can be applied to prove the holomorphy for 1 _< s < 1. 

In [Ki-Sh] we applied this method to the case when G is a split group of type 

G2 over a number field and P = MN,  M --- GL2, where P is attached to the 

long simple root. Ramakrishnan [Ram] showed that any cuspidal representa- 

tion of GL2 has at least one unramified tempered local component. Actually he 

proves the much stronger result that  more than 90% of unramified local compo- 

nents of a cuspidal representation of GL2 are tempered. Muid [Mull has given 

us the classification of unitary representations of p-adic G2. When these results 
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were combined with several other local and global results, in [Ki-Sh] we suc- 

ceeded in proving that  symmetric cube L-functions L(s, a, Sym 3) are entire for 

non-monomial representations. Actually we only need a weaker result that  a 

satisfies weak Ramanujan property in the sense of [Co-PS1] (see Definition 3.1). 

It is known that a cuspidal representation of GL2, GL3 satisfies weak Ramanujan 

property in the sense of [Co-PSI]. 

In this paper, we study the Rankin-Selberg L-functions for GLn ×Gm, where 

Gm is a split classical group, Sp2m, or S02m+l. We prove 

THEOREM 0.1: Let Gm be a split classical group, SP2m, or SO2m+l. Let a (7) 

be a generic cuspidal representation of GLn (Gin). Suppose a satisfies weak 

Ramanujan property in the sense of [Co-PSI]. Then 

(1) The completed Rankin~elberg  L-function L(s, a × T) is holomorphic for 

Res :>  1. 

(2) Let G m =  SO2,~+1 (m >_ 1). Then the completed Rankin~e lberg  L- 

function L(s, ~ x "r) is holomorphic except possibly at s = O, 1 3,1. 

We use the classification of unitary representations coming from unramified 

principal series due to Yoshida [Yo]. The reason we get the definite result in the 

case of SO2n+I is that there are no unitary representations if s > ½. In order 

to prove that the local normalized intertwining operators are holomorphic and 

non-zero for Re s > ½, we need to use standard module conjecture in these cases 

proved in [Mu2] and also some global argument (see Lemma 3.3). The major 

obstacle in the case of Sp2 n is that we do not know whether a generic cuspidal 

representation of Sp2 n satisfies weak Ramanujan property. However, in the lower 

rank cases such as GL2 × SL2, we get the definite result. 

There are limitations in our method. For example, we cannot prove the holo- 

morphy of the exterior square L-function L(s, a, A 2) for 0 < s < 1 for even 

n and self-contragredient a because of normalization s/2 in the above. There 

are unitary representations for 0 < s < 1. The same things happen with the 

Rankin-Selberg L function of GLn × GLn when crl "~ (r2 and the symmetric 

square L-function L(s, a, Sym2). 

Next we study the Rankin-Selberg L-function L(s, Ada(~r) × 7r'), where ~r, rr' 

are cuspidal representations of GL2 and Ada(Tr) = ®v Ad3(~rv) is the adjoint cube 

defined locally in [Sh6], except when 7r~ is an extraordinary supercuspidal rep- 

resentation ofvGL2 (F~): If 7% is an extraordinary supercuspidal representation, 

even though we do know whether Ada(~r~) exists, we can still define the local 

g(s,  av ,r , )  (see (4.1)). This will L-function g(s,  Ad3(~%) × n~) as a quotient L(s, rcv× 7r~) 
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be done by studying the case D5 - 2 in [Sh3]. The case D4 - 2 was done in 

[Ki-Sh2], yielding the holomorphy of the completed Rankin triple L-functions of 

GL2 x GL2 x GL2. We prove 

THEOREM 0.2: Let zr, Tr ~ be two cuspidal representations of GL2. Then 

! l  L(s, Ad3(Tr) × zc')L( s, 7r x 7r') is holomorphic except possibly at s = O, 2, • 

In order to obtain the holomorphy of L(s, Ad3(Tr) x zF), we need to prove that  

L(s, zr x 7d) does not have zeros for ½ < Re s < 1. This is the so-called generalized 

Riemann Hypothesis. However, in light of the converse theorem [Co-PS2], this 

gives the strongest possible evidence for the existence of the adjoint cube lift 

Ad3(Tr) for a cuspidal representation r of GL2. 

ACKNOWLEDGEMENT: We would like to thank Prof. F. Shahidi for his constant 

help in explaining his results and for many discussions. Thanks are due to the 

referee for many comments and corrections. 

1. P r e l i m i n a r i e s  

Recall several facts and notations from [Ki3]: Let G be a quasi-split group over 

a local field and P - M N  is a maximal parabolic subgroup and let a be the 

unique simple root in N. As in [Shl], let 0 = (p, a) -1 .  p, where p is half the sum 

of roots in N. We identify s E C with s& C a~ and denote I(s,  a) = I(sh~, a) -~ 

Indp a a ® exp((sh, Hp()} ) .  

Let A(s&,a, wo) be the standard intertwining operator from I(sh,  cf) into 

I(wo(sK), To(a)). Denote by LM the L-group of M and let Ln be the Lie algebra 

of the L-group of N. Let r be the adjoint action of LM on i n  and decompose 
m r = (~i=1 ri, with ordering as in [Shl]. For each i, 1 < i < m, let L(s,a,  ri) 

be the local L-function defined in [Shl]. It is defined to agree completely with 

Langlands definition of L-functions whenever there is a parametrization. In par- 

ticular the L-function for arbitrary a is just the analytic continuation of the one 

attached to the tempered inducing data through the product formula (cf. part  3 

of Theorem 3.5 and equation 7.10 of [Shl]). (See also Theorem 5.2 of [Sh2].) 

Recall conjecture 7.1 of [Shl]: 

CONJECTURE: Assume av is tempered and generic. Then each L(s, av,ri)  is 

holomorphic for Re s > 0. 

This conjecture is true for archimedean places [A]. 

PROPOSITION 1.1 ([Shl, p. 309]): Assume a~ is tempered and generic. 

(1) I f  m = 1, L(s ,a~,r)  is holomorphic for Res > 0. 
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(2) If  m = 2 and L(s, av, r2) = 1-[/(1 -o~jqvS) -1, possibly an empty product 
where each aj C C is of absolute value one On particular if r2 is one- 

dimensional, this holds), then L(s, a., rl) is holomorphic for Re s > 0. 

PROPOSITION 1.2 ([Ca-Sh, p. 573]): / f  G is a quasi-split classical group, then 
the conjecture holds. 

Now let G be a quasi-split group over a number field F and P = M N  be a 

maximal parabolic subgroup. Let a be a cuspidal representation of M = M(A). 

We may and will assume that  the poles of Eisenstein series may be on the real 

axis by assuming that  a is trivial on A part  of P(N),  where P(R) = M ° A N  is 

the Langlands decomposition. In the case of M -- GLn, we can identify the A 

part  of P(R) with F + ,  where A* F = ]I 1. F + with I[ 1 ideles of norm 1. So in this 

case the central character wo of a is trivial on F + .  

For f C I(s, a), let E(s, f ,g, P) be the Eisenstein series attached to (M, 0) 

(see [Ki3] or [Sh3, section 2] for more details). Given a parabolic subgroup 

Q -- MQNQ, the constant term of E(s, f, g, P) along NQ is zero if Q ¢ P and 

Q ~ pt.  If  P is not self-conjugate, then 

EN(s , f ,g ,P)  = f ( g ) ,  EN, ( s , f , g ,P )=  M(s,a, wo)f(g). 

If P is self-conjugate, then EN(S, f ,g ,P)  is a sum of the above two terms. 

Here M(s, a, To) is the standard intertwining operator from the global induced 

representation I(s,a) to I(wos, woa). Let M(s,(r, wo) = ®.A(s,a~,wo). We 

normalize the intertwining operator A(s, a., To) as follows: 

(1.1) 

A(s, av, To) = r(s, a., wo)N(s, a., w0), 

r I  L( is, ~v, ri) 
r(s, a . ,  w0) = L(1 + is, av, ri)e(s, av, ri, ¢ . )"  

i=1 

Let N(s, a, To) = ®vN(s, av, To), r(s, a, To) = [Iv r(s, av, To) and ~(s, a, ri) = 
1-Iv e(s, av, ri, ¢~). Then we have, for f E I(s, a), 

(1.2) 

M(s, a, wo)f = r(s, a, wo)N(s, a, w0)f, 

L(is, a, ri) 
r(s,a, Wo) = L(l +is,  a, ri)e(s,a, ri)" 

i = l  

Suppose we have the following: 
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ASSUMPTION (A): N(s, cry,To) is holomorphic and non-zero for Re s >_ ½ for 
any v. 

Denote the image of N(s,  av, w0) by J(s, av). If av is tempered, it is the usual 

Langlands' quotient J(s, av) (see [Ca-Sh] for precise references). But if av is non- 

tempered, it is the Langlands' quotient coming from lower parabolic subgroups. 

Let J(s ,a)  = @,  J(s ,a , ) .  

Let a -- ~)~ a .  be a unitary cuspidal representation of M. Then each a~ is a 

unitary representation. 

OBSERVATION 1.3: Suppose we have Assumption (A). If  r(s,a, wo) has 

a pole, then J(s ,a)  -- ~ J ( s , a ~ )  belongs to the residual spectrum 
n2i~ (G(F)\G(A))(M,~), and in particular, each J(s, a~) is unitary. 

Let a -- ~ or. be a globally generic unitary cuspidal representation of M. Then 

for all v, a ,  is generic and unitary. Suppose av is non-tempered. The following 

standard module conjecture is proved for various cases including GLn. Especially 

it is true for archimedean places due to Vogan IV]. In [Mu2], it is proved for Sp~.~ 

and SO2n+1 over non-archimedean places. In [Ca-Sh], it is proved for any quasi- 

split group when ~r0 is supercuspidal. 

STANDARD MODULE CONJECTURE: Given a non-tempered, generic av, there is 

a tempered data 7Co and a complex parameter A0 which is in the corresponding 
<^o,U~( 

positive Weyl chamber so that av -- Igo (A0, 7r0) = IndMo (Tr0 ® q, )>). 

Recall the following [Ki3, Lemma 2.4]. 

LEMMA 1.4: IfB& + A0 is in the positive Weyl chamber for Res ~ ½ together 

with standard module conjecture and conjecture 7.1 of [Shl], then Assumption 

(A) holds. 

Now we recall the technique in [Sh2] of showing that IJim__l L(1 + is, a, ri) is 

non-vanishing on Re s = 0. 

Fix a non-trivial character ~b = ~ ~bv of F \A.  Then there is a natural generic 

character X of U(F)\U(A) defined by ¢. We again use X to denote X[U(A)nM(A). 

Then for any generic cuspidal representation a of M, by changing the splitting in 

M we may assume that a is x-generic. Recall x-Fourier coefficient of E(s, f,  g, P) 

[Sh2]: 

E (s, f, 9, P) = f E(s, f, 
du (F)\U(A) 



Vol. 117, 2000 POLES OF L-FUNCTIONS 267 

Since U(F) \U(A)  is compact,  the poles of Ex(s,  f ,g ,  P) are among those of 

E(s,  f ,  g, P). For f = ~ f~ e I(s,  0) and g = e = (e~), the identity element of 

G(A), we have [Sh2] 

m 

E × ( s , f , e , P )  -- 1-I Wfv(s 'ev)  l-~ Ls(1 + i s ' a ' r i ) - l '  
v ~ S  i = l  

where Wf. is the Whit taker  model of I(s,  a,).  Then W]~ is holomorphic for 

Re s > 0 and non-vanishing (see [Sh2, Proposition 3.1]). Therefore, the zeros of 

1-L~=l Ls(1  + is, a, r~) are among the poles of the Eisenstein series E(s, f ,  g, P). 

So we have 

PROPOSITION 1.5 (Shahidi [Sh2]): I f  the Eisenstein series E(s,  f ,g ,  P) does 

not have a pole at so, i.e., there is no residual spectrum at so, then 
m 1 l-L=1Ls( + is, o, ri) has no zero at so. 

m 1 Shahidi [Sh2] showed that  1--[i=1 Ls (  + is, a, ri) is non-vanishing on Re s -- 0 

by using the fact that  E(s, f ,  g, P) is holomorphic on Re s -- 0. 

COROLLARY 1.6 ([Ki3, Lemma 2.3]): I f  P is not self-conjugate or woe ~ o, the 

Eisenstein series E(s,  f ,  g, P) does not have a pole for Re s > 0. Hence in these 
m cases, [L=I Ls(1 + is, o, r~) has no zeros for Re s > 0. 

Remark 1.1: We should mention that  in [Ki3], "woo = 0" should be writ ten as 

"WOO ~ a" ,  and "woe # a" as "woe ~ e".  

LEMMA 1.7 ([Zh]): Let av be an irreducible tempered, generic representation of 

M.  Then if N(A ,  or,, wo) is holomorphic at Ao and conjecture 7.1 of [Shl] holds, 

then it is non-zero at Ao. 

Proof'. Let wl be a Weyl group element such that  wlAo is in the closure of the 

positive Weyl chamber. Consider the cocycle relation N(wlA0, Wlav, wow~ -1) = 

N(A0, 0 . ,  wo)N(wxAo, W X O v ,  w l l ) -  Here N(wlA0, W l O v ,  W0Wl 1) is holomorphic 

and non-zero. Also N(wlA0, Wlav, w~ 1) and N(A0, 0~, w0) are both  holomorphic. 

Therefore N(A0, av, To) cannot be zero. | 

PROPOSITION 1.8: Let 0 = ( ~ ,  0 .  be a unitary, generic cuspidal representation 

of M.  Assume standard module conjecture and conjecture 7.1 of [Shl] so that  

Lemma 1.7 may be applied. Let S be a finite set of places, including all the 

archimedean places, such that for every v ~ S, av is unramified. Suppose that 

M(s ,  0, To) is holomorphic for Res  > 1, i.e., the Eisenstein series attached to o 
m Ls(is,(r,  rl) 

is holomorphic for Res  >_ 1. Suppose that the quotient [L=I Ls(1  + is, ~, ri) is 
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holomorphic for R e s  > 1 and non-zero for Res  ~ 1, and the local L-functions 
L(s, av,ri), 2 < i < m, are holomorphie for Res  > 1. Then for each v, the 
normalized operator N(s, av, w0) and the local L-function L(s, av, rl) are holo- 
morphic for Re s > 1. 

Proof*: Take f = ( ~ .  fv such that  for each v ~ S, f .  is the unique Kv-fixed 

function normalized by fv(e~) = 1 and let ] ,  be the K.-fixed function in the 

space of I ( -s ,  Wo(a~)), normalized the same way. Then (1.2) can be writ ten as 

(see [Sh3, (2.7)]) 

(1.3) ~I Ls(is, 0, ri) @ A(s, av, wo)f,. 
M(s,a, wo)f -- Ls(l + is, a, ri) @]~® 

i=l  v~S  vCS 

We imitate the proof of [Sh3, Theorem 5.2]. Fix v C S, and normalize 

A(s, ov, Wo). For each u E S, u ~ v, A(s, c%, wo) is not a zero operator. Pick f~, 

u C S, u ~ v, so that  A(s, a~, wo)f~ ¢ 0. Then the above equation is written as 

r I  Ls(is, a, ri) ffI L(is, a.,ri) @ f . ®  
M(s,(T, wo)f = i s ( 1  + is, a, ri) i ( 1  + is, a.,ri) 

i = 1  i----1 v~S  

N(s,  a , ,  wo) 
@ d(s,a~,,wo)f~® m 

~ e s , ~ .  [Ii=l ~(s, ~v, ri, ¢.) 

Now pick No _> 1 so large that  L(1 + s, av,rl) has no poles for R e s  > No. 

Then the normalized operator N(s, av, w0) is holomorphic for Re s > No - 1. 

By Lemma 1.7, N(s, a,, wo) is non-vanishing for Re s > No - 1. Then by our  

assumptions, L(s, a~, r l )  has no poles for R e s  _> No - 1. Arguing inductively, we 

see that  L(s,a.,rl) has no poles for Res  _> 1. II 

Remark  1.2: I t  is possible to prove that  modulo standard module conjecture 

and conjecture 7.1 of [Shl], the normalized intertwining operators N(s, av,wo) 
a n d t h e  local L-functions L(s, ~., ri), are all holomorphic for Re s _> 1 for non- 

m Ls(iS,~,rl) 
archimedean v, without the assumption that  the quotient 1]i=1 Ls(l+i,,~,rd 
is holomorphic for Res  > 1 and non-zero for Res  k 1: We only need tha t  

M(s,a, wo) has only finitely many poles for R e s  > 0 and the quotient 
rn Ls( is ,a ,r l )  l-L=1 Ls(l+i~,.sd has only finitely many poles and zeros for Res  > 1. We do 

this in a future work with Shahidi. 

* Thanks are due to Prof. Shahidi who pointed out an error in an earlier version of 
the proof. 
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2. S o m e  fac ts  on  u n i t a r y  r e p r e s e n t a t i o n s  

In this section, we assume that F is a local field of characteristic 0. We restrict 

ourselves to the case of split reduetive groups. Let X be an unramified unitary 

character o f T  and A E a* = X ( T ) F ® •  and X' = A ® X .  Then the induced 

representation I(A, X) = IndB G X' is defined. It has the unique unramified irre- 

ducible subquotients, denoted by 7r(A, X). Suppose A is in the closed positive 

Weyl chamber and let A1 = {a E A] A o a  v = 1}. Let PI = M1N1 be the 

standard parabolic subgroup of G generated by the roots in A1. Let Ir1 be the 

unique irreducible spherical subrepresentation of IndU~ul X. 

THEOREM 2.1 ([Li, Theorem 2.2]): The following are equivalent: 

(1) X'ool v =~ll forany~, 
(2) Indap1 A ® 7rl is irreducible (hence equals 7r(h, X)), 

(3) 7r(A, X) is generic. 

PROPOSITION 2.2 ([Li, Lemma 2.3]): Let G be G be unramified reductive groups 

over F,  and let ¢: G , > G be a central isogeny defined over F. Let [~ = T(]  

be a Bore /F-subgroup  of 0 and assume ¢ maps [~, (], G(O) to B,  T and G(O),  

respectively. Let X be an unramified unitary character of T. Then we can define 

a unitary character )~ - ¢*(X) o f t  by ~(~) =- X(¢(t)). Conversely, given any )~, 

there will be finitely many  X such that ~ = ¢*(X). Then ~r(A, ~) is unitary i f  and 

only ifTr(A, X) is. 

Recall the result of Yoshida on the classification of unitary unramified 

representations. 

THEOREM 2.3 ([Yo, Theorem B]): Let G = SO2~+1. Let A = alel  4- . . .  4- anen. 

Assume I(A, X) is irreducible. Then it is unitarizable i f  and only i f  iai[ < 1 for 

i = l , . . . , n .  

THEOREM 2.4 ([Yo, Theorem C]): Let G = Sp2 ~. Let A = alex + ""  + anen. 

Assume  I (A ,x )  is irreducible. Then i f  it is unitarizable, we have ]a~] < 1 for 

i = l , . . . , n .  

THEOREM 2.5 ([Yo, Theorem 11.4]): Let G -= SO2n. Let A = ale1 + ' "  +anen.  

Assume I(A, X) is irreducible. Then i f  it is unitarizable, we have ax - ]a~] < 1. 

Yoshida's result is not satisfactory for G = SO2~. In order to obtain a bet ter  

result, we need Shahidi's result. 

THEOREM 2.6 ([Sh3, Lemma 5.8]): Let M N  C G be a maximal parabolic sub- 

group of  a quasi-split group over a number field. Let av be a unramified local 
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component of  a cuspidal representation a of M.  Then for each ri, L(s, av, ri) is 

holomorphic for Re 8 _> 1. 

COROLLARY 2.7: Let av be an unramified local component of a generic cuspidal 

representation a of  S02,~. Write it as av = 7r(A,x) for A = ale1 + . . .  + anen. 

Then [ai[ < 1 f o r i  = 1 , . . .  ,n. 

Proo~ This is Corollary 5.4 of [Sh3], direct consequence of Theorem 2.6. | 

COROLLARY 2.8: Let a (r) be a generic cuspidal representation of GLk (SO21+1). 
3 The L-function L(s, a × "r) is absolutely convergent for Re s > 5" 

We recall a proposition from Muid [Mul, Lemma 5.1]. 

PROPOSITION 2.9: Let G be any reductive F-group and P = M N  its F-parabolic 

subgroup. Denote by Unr(M) the group of unramified characters. For any irre- 

ducible representation ~r of  M and A E Unr(M), denote I(A, 7r) = Indp a A @ 7r. 

(1) The set of A such that I(A,~r) has unitary subquotients, is compact. 

(2) Let 7r be a hermitian representation and I(O, r)  be an irreducible unitary 

representation. Then zr is unitary. 

We record here a useful lemma. 

LEMMA 2.10: Let F be a local field of  characteristic zero, archimedean or 

non-archimedean. Let al, a2 be two discrete series representations of GLk, GLt, 

respectively. Then the normalized intertwining operator N(s , a l  @ a2, wo ) is 

holomorphic and non-zero for Re s > -1 .  

Proof: This is a special case of [M-W, proposition 1.10]. Or it follows from 

[Ca-Sh] by noting that  

N(s ,  al ® a2, Wo) = L(s + 1, al × a2) A(s, al ® a2, wo). 
L(s,  al × a2) 

By [Ca-Sh, Theorem 6.2] for archimedean places and the well-known result of 

Zelevinsky [Ze] for non-archimedean places, GL,~ satisfies generalized injectivity 

and thus, by [Ca-Sh, Theorem 5.1], A(s, al ® a2, w0) is entire. By Proposition 
L(s, al × a2) 

1.1, L(s, al  × a2) is holomorphic for Re s > 0. | 
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3. R a n k i n - S e l b e r g  L - f u n c t i o n s  fo r  GLk x Gl 

Let  Gn = SP2n, SO2n+l or SO2n. Let M N  C Gk+l be a max imal  parabol ic  

subgroup  with  M = GLk xGl .  From the c a s e s  (Bn)  , (Cn) ,  and (D~ - 1) in [Sh3], 

we have the following decomposi t ion  of the adjoint  representa t ion of L M  o n  L n :  

r = r l  @ r 2  

where 

s o  if G = Sp2~ (r2 = 0 if k = 1), r l  = Pk ® P2I+I, r 2  = A2pk, 

{ if G = SO2n+t,  r l  = Pk ® P21 , r 2  = Sym 2 Pk, if 1 > 1 
r = r l  = Sym 2pk, if 1 = 0, 

if G = SO2n, ~ ?~1 =- Pk ® pS?,  r 2 = A2pk,  if 1 > 4 
[ r = rl = A2pk, if 1 = 0. 

Sp Here Pk is the s t anda rd  representa t ion  of GLk(C),  P2t is the s t andard  represen-  

ta t ion  of SP2 z(C), so  P 2 / + l  i s  the  s tandard  representa t ion of SO2z+1 (C), and pSO is 

the  s t anda rd  representa t ion  of SO2I(C). 

Recall  the following definition from [Co-PSI]. 

Definition 3.1: Let 7r be an au tomorph ic  representat ion.  We say t ha t  7r satisfies 

weak R a m a n u j a n  p rope r ty  if there exists an infinite sequence of places Vm such 

that 

(1) the local components 7~v. ~ are unramified with Satake eigenvalues {Av.~,i} 

and 

(2) for every e > 0 we have maxi{i/~vm,il ,  I)tVm,il } - 1  = O(qvm)" 

I t  is known tha t  a cuspidal representa t ion of GL2,GL3 satisfies the  weak 

R a m a n u j a n  property .  

THEOREM 3.1: Let M N  C SO2n+1 or SO2,~, M = GLn.  Let  a be a un i t a ry  

cuspidal representation of  GL=. 

(1) I r a  is not self-contragredient, then the completed L-function L(s, a, Sym 2) 

and  L(s, a, A 2) have no zeros for R e s  > 1 and are entire. 

(2) I f  a is self-eontragredient, then L(s, a ® w, Sym 2) and L(s, a ® co, A 2) 

have no zeros for Re s >__ 1 and are entire, where co is any  non-quadratic 

grSssencharacter of F. (If n is odd, then L(s, a, A 2) is entire and has  no 

zeros for  Re s _> 1 [Ki3].) 

(3) For all v, non-archimedean or archimedean, the local L-functions 

L(s ,  a . ,  Sym 2) and  L(s, av, A 2) are holomorphie for R e s  >_ 1. 
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(4) Suppose cr is self-contragredient and satisfies weak Ramanujan property. 
Then the completed L-functions L(s, a, Sym 2) and L( s, a, A 2) are holomor- 
phic for s > 1. 

Proof: Note that  wo(a) = 5. Let a ~ = a if a is not self-contragredient and 

a I -- cr®w if a is self-contragredient, where w is a non-quadratic grSssencharacter. 
Then by Corollary 1.6, the partial L-functions Ls(s,  a I, Sym 2) and Ls(s,  a', A 2) 

have no zeros for Re s >_ 1. 

Consider (1.3). Since a ~ is not self-contragredient, M(s,  a ~, wo) is holomorphic 
! for Re s > 0. Since the unnormalized operators A(s ,a , ,wo)  are non-zero oper- 

ators, we conclude that  the partial L-function Ls(s,  a ~, Sym 2) and Ls(s,  a ~, A 2) 

are holomorphic for Re s > 0. Proposition 1.8 implies that each local L-function 
L(s ,a~ ,Sym 2) and L(s, ' 2 av,A ) are holomorphic for Res  >_ 1. If a is self- 

contragredient, given a place v, take a non-quadratic grSssencharacter w so that 

w, = 1. Then (3) follows. 

In order to prove the statements about the completed L-functions in (1) and 

(2), note that Assumption (A) holds in these cases, i.e., N(s, av,Wo) is holo- 
1 for all v ([Ki3, Proposition 3.4]). Hence in morphic and non-zero for Re s ~ 

L(s, a', Sym 2 ) L(s, a', A 2) 1 
- -  2 "  (1.2), L(1 + s, a', Sym 2) and L(1 + s, a', A 2) are holomorphic for s > There- 

fore L(s,a ' ,  Sym 2) and L(s,a' ,  A 2) are holomorphic for s > ½. We apply the 

functional equations. 
In order to prove (4), let av be an unramified local component. Then 

a ,  = IndamL"(#ll 1~' ® . . -  ®#~]H ~ ®ul  ® ' - -  ®t'p ®#~[ ] - ~  ®- . .  ®#11 1-~) ,  

I(s,a~) =IndaB (#1] ]~+'~ ® ' " ® # r ]  ]~+a~ ®v~ ® . . . ® 4  ®#ri  I ~-ar  

From the weak Ramanujan property of euspidal representations of GL,~, given 

Res0 > 1, we can find a local component av such that Reso - 2al > 1. Then 

by Theorem 2.1, I(s,  av) is irreducible for all Res  >_ Res0, hence it cannot 

be unitary. So by Observation 1.3, there is no residual spectrum for Re s > 

1. Consider (1.3). Since the unnormalized operators A(s, av, w0) are non-zero 

operators and Ls(s,  a, Sym 2) and Ls(s,  a, A 2) are holomorphic for Re s > 2 by 

[Sh3, Theorem 5.1], Ls(s,  a, Sym 2) and Ls(s, a, A 2) are holomorphic for Re s > 1. 

We apply (3). | 

Remark 3.1: The holomorphy and non-vanishing of L(s,a,  Sym ~) and 

L(s, (~, A 2) for Re s > 1 follow immediately from the absolute convergence of the 
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two L-funct ions  for Re s > 1. D. B u m p  and D. Ginzburg  proved tha t  the  par t ia l  

L-funct ion L s ( s ,  a, Sym 2) is holomorphic  except  possibly at  s = 1. ( S y m m e t r i c  

square  L- funct ions  on GL(r ) ,  Annals  of Mathemat ic s  136 (1992), 137-205.) 

THEOREM 3.2: Let  M N  C Gk+l, M = GLk xGz with l ~ 0 and Gl = Sp2t, or  

SO2/_kl. Let  a (~-) be a unitary, generic cuspidal representation o f  GLk (Gz). 

(1) I f  a is not  self-contragredient, then the comple ted  L- funct ion L(s ,  a x T) 

has no zeros for Re s > 1 and is holomorphic for s > 1. 

(2) I f  ~r is setf-contragredient,  then L ( s, ( a®co ) x T) has no zeros for Re s 2 I and 

is holomorphic  for s > 1, where co is any non-quadratic gr6ssencharaeter of  

F.  

(3) For all v,  non-archimedean or archimedean, the local L- funct ion  

L(s ,  av x ~-v) is holomorphic  for Re(s)  > 1. 

(4) Suppose  a is self-contragredient and satisfies weak Ramanu jan  property.  

Then  the comple ted  L- funct ions  L(s ,  a x ~-) are holomorphic  for s > 1. 

Proo~ Note t ha t  w0(a®T)  = 8®T.  Let a t = a i f a  is not  self-contragredient  and 

a t = aQco if a is self-contragredient ,  where co is a non-quadra t ic  gr6ssencharacter .  

Then  by Corol lary  1.6, the par t ia l  L-functions L s  (s, a ~ x T) has no zeros for Re s > 

1, since the  par t ia l  L-funct ions Ls ( s ,  a' ,  Sym 2) and Ls ( s ,  a t, A 2) a re  holomorphic  

for R e s  > 0 (Theo rem 3.1). 

Consider  (1.3). Since a t is not  self-contragredient,  M(s ,  a t x T, WO) is holomor-  

phic for R e s  > 0. Since the unnormal ized opera tors  A(s,a~v,Wo) are non-zero 

opera tors  and L s ( s ,  a t, Sym 2) and Ls ( s ,  a t, A 2) have no zeros for Re s > 1, we 
1 conclude t ha t  the  par t ia l  L-funct ion Ls ( s ,  a ~ x T) is holomorphic  for R e s  > 3" 

Now we app ly  Propos i t ion  1.8 to a t ® v. S tandard  module  conjecture  and 

conjecture  7.t  of [Shl] are proved in [Mu2], IV] and [Ca-Sh]. Hence Propos i t ion  

t x Tv) is holomorphic  for Re s _> 1. If 1.8 implies t ha t  each local L-funct ion L(s ,  av 

a is self-contragredient ,  given a place v, take a non-quadra t ic  grLssencharacter  w 

so tha t  w. = 1. Then  (3) follows and so do the s t a t ements  abou t  the comple ted  

L-funct ions  in (1) and (2). 

In order  to prove (4), let av ® ~-v be an unramif ied local component .  T h e n  ~-v 

is a componen t  of Ind~  * (7 h I I ~3~ ® " "  ® ~/ll I &). Then  I ( s ,  av ® T~) is a componen t  
of IndB c (#11 18-~'O~1 ®"" "~]~rl Is+~r ~//1] I s~ ' ' ' / J p l  IS®~rII . . . .  ®' ' ' '1]  ]S--~I® 
~/1] [& ® " "  ® ~l[ ]~).  Applying  the same technique as in T h e o r e m  3.1, we see 

t ha t  weak R a m a n n j a n  p rope r ty  and Theo rems  2.3 and 2.4 imply t ha t  the par t ia l  

L-funct ions  L s ( s , a  x 7) is holomorphic  for R e s  > 1. We app ly  (3). II 

In the  following let G ,  = Sp2 . or SO2n+1. Let  a (T) be  a un i t a ry  cuspidal  
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representation of GLk (Gz = SP21 or 802/+1, I # 0). By standard module conjec- 

ture proved in [Mu2] for non-archimedean places and [V] for archimedean places, 

non-tempered unitary representations av, Tv of GLk and Gl, resp. can be written 

as follows: 

a ,  = Ind(] det ]~'al @. . .  ® I det I~pap ® ap+l ® I det I -~ 'ap ® . . .  ® I det [ - ~ a l )  

and 

= Ind(I det  -, ® . . .  ® I det  ® 

1 0 < ~q < .-. < 131, and ai's, 7j, i = 1,...,q, are w h e r e O <  ap < . . .  < al  < 5, 

tempered representations of GL, TO is a tempered representation of G~. Then 

(3.1) I ( s , a , ® T ~ )  = I n d  ([detl~+~Ul ® . . .  ® Idetl~+~ap® Idet l~ap+~® 

I det ]~-~'ap ® . . .  ® I det I~ -~a l  ® I det IZ~T1 ® . - .  ® [det IZ~Tq ® 7-0). 

LEMMA 3.3: Let a (T) be a cuspidal representation of GLk (Gz = Sp21 or SO2g+1) 

and av and Tv be as above. Then 131 < 1. 

Proof: We write ~-v = Ind(I det la~pl ® . . .  ®[d e t  [arp~ ® PO), where P l , . . -  ,P~ 

are discrete series representations of GLm, i = 1 , . . .  ,r  and P0 is a tempered 

representation of Gno and 0 < a~ < . . .  < al.  

If v is non-archimedean, by [Ro, Proposition 5.15], there exists a cuspidal 

representation 7r of GL,~, such that Try = Pl. By Theorem 3.2, L(s, 7r, x Tv) 

is holomorphic for Res  k 1. However, L(s,~rv x r~) contains a factor 

L(s - a l ,p l  x Pl) which has a pole at s - al = 0. It follows al < 1. 

Next let v be an archimedean place. A discrete series for G L ,  exists only 

for GLI(N) ,GLI(C)  and GL2(N). Given a unitary character p for GLI(F~), 

F .  = N, C, there exists a grhssencharacter # of F such that #~ = p. By Jacquet-  

Langlands correspondence [Ja-La], given a discrete series p of GL2 (F,) ,  Fv = ~, 

there exists a cuspidal representation T of GL2 such that  % -- p. Proceeding as 

in non-archimedean case, we obtain the result. | 

PROPOSITION 3.4: Assumption (A) holds in these cases, i.e., for a11 v, 
1 N(s ,  a~ ® Tv, WO) is holomorphic and non-zero for Re s _> 5" 

Proo~ By Lemma 3.3, 131 < 1 and thus in (3.1), Re ( s - a 1 -1 3 1 )  > - 1  for Res  k 

! The rank-one operators are either operators for the case GLk x GLz C GLk+l 2" 
or GLI C Gt. The operator for the case GLk × GL~ C GLk+l is holomorphic for 

Res  :> ½ by Lemma 2.10. For the operator for the case GLI C Gl, we proceed 

as in [Ki3, Proposition 3.3, 3.4]. Hence N(s,  a , ,  Wo) is holomorphic for Re s > ! 
- -  2 "  
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Applying L e m m a  1.7 to (3.1), we see tha t  N ( s ,  av, wo) is non-zero for R e s  > _1 
- -  2 "  

| 

We look at a special case: G = S O 2 n + l ,  M N  C S 0 2 n + l ,  M = GLk x SO2l+1, 

k + 1 = n. In this case, we can get the definite result due to Theorem 2.3. 

THEOREM 3.5: Let  a (Q  be a generic cuspidal representation o f G L m  (SO2~+1). 

Suppose  that  ~r satisfies weak Ramanu jan  property.  Then the Rank in -Se lberg  

L- funct ion L(s ,  a x ~-) is holomorpMc except  possibly  at s = O, 1 1. 

1 Proof: If  s > 1, L(s ,  a x 7) is holomorphic by Theorem 3.2. Given 3 < s < 1, 

from weak Ramanu jan  proper ty  of cuspidal representations of GL~, we can find 

an unramified component  Gv @ ~ such tha t  s - (~1 > ½, s + a l  < 1. Since % 

1 Then  from Theorem 2.1, is uni ta ry  and unramified, by Theorem 2.3, ~1 ( 2" 

I(S,  a~ ® Tv) is irreducible, and hence is not uni tary  by Theorem 2.3. Therefore, 
1 L(s ,  a x T)L(2s ,  a, Sym 2) is holomorphic except possibly at s = 3, 1 if s > 0; no 

poles if a is not  self-contragredient. Here L(s ,  a, Sym 2) has no zeros for Re s >_ 
1. 3, on the line, Re s = 1 it follows from Prop.  1.5. For R e s  > ½, consider 

L(2s,  a x a) = L(2s,  or, Sym2)L(2s,  a, A 2) and apply Theorem 3.1 (4) and the fact 

tha t  L(2s,  a x a) has no zeros for Re s  > I. | 

For G = SP2 n or SO2n, we do not have a precise result. For SO2m we do not  

even have s tandard  module  conjecture for ramified places. 

LEMMA 3.6: Let  P l , . . .  ,#n be uni tary local unrami/~ed characters of  F x and 

let 7rl = Ind~ Lk (#1 ® "'" ® #k).  We assume that  k >> 2 and 7q has the trivial 

centrM character, i.e., # l " " # k  = 1. Le t  ~r2 be the unique ,generic componen t  

of  I n d ~ ' ( # k + t  ® . . .  ® #~), where Gl = Sp2z,SO21. Then  i f  s > ½, s 7 £ 1, 

I = Indca~k xC~ (I det  1~7rl @ 7r2) is irreducible and is not  unitary. 

Proo~ By Theorem 2.1, if s > ½, s ~ 1, I is irreducible. Therefore I cannot  be 

uni ta ry  for s > 1. Suppose ½ < s < 1 and I is unitary. Note tha t  I is hermit ian 

if and only if 7rl -~ ~-1 and ~r2 is fixed by c~, the sign change when k is odd and 

Gt = SO2l. Since 7q -~ ~-1 and #1 "'" ttk = 1, #i = ttj -1 for i ~ j .  We assume tha t  

#1 = #~-1. Then  

I --~ IndFG~ x...xF× xG,(t 1~#1 ®- - .  @ I J~#k ® :rr~) 

--~IndF G~ x...xF× xa,(I I~#1 ® I ® I ' "  ® I ® 

- ~ I n d ~ 2  I~m,I I-~/~1)® 

i . o . _ 2  nOFx x...xFX xG~(I IsP 3 @''"  ® I I~k  ® c,(~r2))). 
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Therefore, by Proposition 2.9, 7r([ IS#l,[ [-~#1) is unitary. However, it is not 
1 unitary for s > ~. | 

Recall the definition of density from [Ram]. 

Definition 3.2: Let S be a set of primes in a number field F. Then the upper 

(resp. lower) Dirichlet density of S is given by 

~ S  G -~ [ -~ 6 (S ) - -  lim ~,resp. 6 (S) - -  lim E . c s q ~  
s-+l+ l o g ( s -  1) - s_~l + l o - - ~ :  ~ ) ] "  

One says that  S has a density, denoted by 6(S), when the upper and lower 

densities are equal. For example, when S is the set of all but a finite number 

of primes, it has a density with (~(S) = 1. Note that if X = S U T is a disjoint 

partit ion of sets of primes, then _~(S) > _~(X) - 6(T). 

Let T = ~ v  rv be a generic cuspidal representation of SP2/. We need a 

condition that  is a little stronger than weak Ramanujan property, i.e., given 

e > 0, the set of primes such that  maxi{IA~l, lA~ill} >_ q~) has density zero, 

where {Avi, i = 1 , . . . ,  n} is Satake eigenvalues of r .  for unramified places. 

THEOREM 3.7: Let a (7-) be a generic cuspidal representation of GLk (Gl = 

SP2/ ) .  Suppose a and T satisfy the above condition. Then the completed L- 

function L(s, a x T) is holomorphic except possibly at s = 0, ½, 1. 

Proof: First of all, we prove that if L(s ,a  x r )  has a p o l e  for s > i _ ~, then 

w¢2 = 1, where we is the central character of a: By Proposition 3.4, N(s ,  av, wo) 

is holomorphic and non-zero for Re s > ½ for all v. So by Observation 1.3, if 

L(s, a x T) has a pole for s > ½, then the residual automorphic representation 

J(s,  a ® ~') = @~ J(s,  a~ ® rv) is unitary. By assumption, in (3.1), I(s,  a~ ® ~ )  is 

an induced representation in the closure of the positive Weyl chamber except for 

places of density zero. Then in order that J(s, a~ ® T~) be unitary, J(s,  a,  @ T~) 
should be hermitian and therefore, w2  = 1, especially for places of lower density> 

_ 2 = 1. Or this follows immediately from 1 So by Hecke's theorem [cf. Ki-Sh], w~ 2" 
the fact that  if w 2 ~ 1, then w0(a ® T) ~ a ® T, and hence the Eisenstein series 

attached to a ® T is holomorphic for s > 0. 

Then w~. = 1 for places of density ½. By Lemma 3.6, if a ,  ® 7-. is tempered, 

J(s,  av @ T,) cannot be unitary for s > 1, s ¢ 1. However, by Proposition 2.9, 

it cannot be unitary for non-tempered a~ ® T. with Satake parameter lAy,i] _~ q~ 

for some e > 0. By assumption, it is the case except for places of density zero. 

Therefore L ( s , a  x T) cannot have a pole for s > ½, s ~ 1. We apply the 

functional equation. II 
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COROLLARY 3.8: The completed L-function L(s,a x T) of GL2 x SL2 is 
bolomorphic except possibly a t  s = 0, ½, 1. 

Proof: Let 7r = ( ~  Try be a cuspidal representa t ion of GL2 and {a~,/3v} be a 

Satake  p a r a m e t e r  of Try for unramif ied places. Then  by [Ram, L e m m a  3.1], given 

> 0, the  set  of  pr imes  such tha t  la~ +/3~} k q~ has densi ty  zero. Note  t ha t  if 

7% is t empered ,  lay +/~vl -< 2. If ~r. is non- tempered ,  then  la~ + / 3 .  I = q~ + q~-~ 

1 Hence the  condit ion in Theorem 3.7 is satisfied. II for s o m e 0 < r <  5. 

4. R a n k i n - S e l b e r g  L - f u n c t i o n  L(s, Ad3(Tr) x 7r') 

Let  7r = ~ v  7% be a cuspidal  representa t ion  of GL2. Then  we can define the 

local adjoint  cube lift of 7% [Sh6, section 3], except  when Try is an ex t raord inary  

snpercuspida l  representat ion.  More specifically, E~ = Ad3(7%) is an admissible  

represen ta t ion  of GL4(F . )  such tha t  

(1) if v is a rchimedean,  then  E .  is an irreducible admissible representa t ion  of 

GL4(Fv)  a t t ached  to Ad 3 o~: WE ~ GL4(C),  where ~: WE > GL2(C) 

is the  h o m o m o r p h i s m  a t tached  to Try; 

(2) if v is non-arch imedean  and 7% = 7r(#, u), where #, u are un i t a ry  characters  
of F~ x , then  E .  = IndGBL4(F') (Ft2u -1  ® ~t ® u ® / t - I / z 2 ) ;  

(3) if v is non-arch imedean  and Try = 7r(tt [ [r,#[ i - r ) ,  where # is a un i t a ry  

charac ters  of F x and 0 < r < ½, then Ev is a unique quot ient  of 

IndaBL4(rv)(ttl ®tt l  I I I-3r); 
(4) if v is non-arch imedean  and 7r~ is special, i.e., 7% = ~r(# I 1½,#l I-½). 

T h e n  E~ is a unique square integrable const i tuent  of 

IndaBLt(F°)('l I ®'1 1½ ®hi I ®'1 
(5) if v is non-a rch imedean  and 7r. is a non-ex t raord inary  supercuspidal  rep- 

resentat ion,  then  7r, = 7r(x), where 7r(x ) is the representa t ion  of the  local 

Well g roup  induced f rom X, a charac ter  of Kv, [K~ : Fv] = 2. Let  ~/be the 

quadra t ic  charac te r  a t t ached  to K~,/F~, by class field theory. Let  X' be  the  

conjugate  of  X by the act ion of the nontr ivial  element of the  Galois group. 
I_~GL4(F~) 

T h e n  E~ is the induced representa t ion  I~UGL 2 x GL2 u(X2X ' -~ )  ® (~(X) ® 7?); 

(6) if v is non-a rch imedean  and ~ is an ex t raord inary  supercuspidal  represen- 

t a t ion  and admi t s  a lift Ev, then  E~ is ei ther supercuspidal  or is a con- 

s t i tuent  of a representa t ion  induced from a supercuspidal  representa t ion  of 

CL2(F.) × CL2(F.). 
Our  u l t ima te  goal is to prove t ha t  even for an ex t raord inary  supercuspidal  

represen ta t ion  7%, we can define the adjoint cube lift Ev = Ad3(Tc~) and  E = 
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~ ) .  E .  is an au tomorph ic  cuspidal  representa t ion of GL4 if 7r is not mono-  

mial.  In  order  to app ly  the converse theorem [Co-PS2], we need to consider the  

Rank in -Se lbe rg  L-funct ion L(s,  Ad3(~r) x # )  for a cuspidal representa t ion  ~r r 

of  GL2. If  ~r. is an ex t raord inary  supercuspidal  representat ion,  even if we do not  

know whe ther  the  adjoint  cube lift exists, we can still define the  local L-funct ion 
L ( s , a v , r l )  L(s ,  Ad3(Tr~) x 7r~) as a quotient  L(~,~.x~') in (4.1). 

We have to divide into two cases: ~r is monomia l  or not. 

First ,  we suppose  7r is a monomia l  cuspidal representat ion,  i.e., 7r ® 7/ "~ 7r 

for a nontr iv ia l  grhssencharacter  r/. Then  ?.12 = 1 and ~? determines  a quadra t ic  

extension E / F .  According to [L-La], there  is a grhssencharacter  X of E such t ha t  

7r = ~r(X), where  ~r(X ) is the  au tomorph ic  representa t ion  whose local factor  a t  v 

is the  one a t t ached  to the representa t ion of the local Weil group induced f rom 

X~. Let  X ~ be  the  conjugate  of X by the  act ion of the  nontr ivial  e lement  of the  

Galois group.  T h e n  the  G e l b a r t - J a c q u e t  lift (adjoint square) of ~r is given by 

_-- T n A G L 3 ( A )  H . . . .  × ® 

There  are two cases: 

CASE 1: XX l-1 factors through the  norm, i.e., XX ~-1 = ~oNE/F  for a gr6ssen- 

charac te r  ~ of F. Then  ~(XX '-1) is not cuspidal. In fact, r(XX '-1) = r(O,7)r/). 

In this case, 

L(s, Ad3(Tr) x lr') = L(s, (~l ® r) x r ')L(s,  (~71 @ ~) z ~'). 

Therefore ,  L(s, Ad3(Tr) × ~ )  is holomorphic  except  possibly a t  s = 0, 1. I t  has a 

pole a t s = l w h e n K r = ~ ® T r o r ~ / ® ~ r .  

CASE 2: XX t-1 does not factor  th rough  the norm. In this case, ~r(XX ~-1) is a 

cuspidal  representa t ion.  Then  

L(s ,  Ad3(~r) × lr') -- L(s ,  Tr(XX ' -1 )  x ~r × ~') .  

By  Propos i t ion  3.10; 3.11 of [Ki-Sh2], the above tr iple L-funct ion is holomorphic  

except  possibly a t  s = 0, 1. It  has a pole a t  s = 1 when ~ = ~r(X-2X~). 

Next  we assume  t h a t  ~r is not  monomial .  Let  II  be  the  adjoint  square  ( G e l b a r t -  

J acque t  lift) of  ~r. I t  is a cuspidal representa t ion of GL3 since ~r is not  monomial .  

Let  G -- Spin(2n) be  a spli t  spin group and  

~ {O~ 1 ~ e 1 - -  e 2 ,  . . .~ C ~ n - 2  ~ e n _  3 - -  e n _ 2 ~ O t n _ l  -~  e n _  t - -  e n , O : n  ~ e n _  1 1 t- e n } .  
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Let  T C Mo = M be the Levi subgroup of G genera ted by 0 and let P = M N  

be the corresponding s t andard  parabol ic  subgroup of G. Then  the s t anda rd  

calculat ion (cf. [Sh4]) shows tha t  

M = (GL1 x SLn-2 x SL2 x SL2) /R,  

where 

I 
{H~,(t)Ha2(t2) . . .  Ha~_2(tn-2)H~ ~ ( t ~ - ) H a ~ ( t ~ )  : t n - 2  = 1} 

if n even, 

R = / { H ~  1 ( t2)H~: (t4) .. H ~ _ ~  ( t2(~-2))H~_~ ( t~ -2)H~ ( t~-2)  : t 2(n-2) = 1} 

( if n odd. 

Let  7r, 7r ~ be two cuspidal representat ions of GL2 and II be  a cuspidal  repre- 

senta t ion of GLn-2 .  Let  7r0 (resp. 7r~) denote  a const i tuent  of  7rISL2(AF) (resp. 

7r[SL2(A~) ). Let  H0 be a const i tuent  of IIlSLn(AF). If W and w ~ are central  char- 

acters  of 1r and ~r !, then  cr = ([I0 @ ww !) ® 7r0 @ 7r/~ can be considered as a 

representa t ion  of M ( A F ) .  Here we need to impose a condition t ha t  if n is odd,  

H has the t r ivial  central  character .  This  is the case Dn - 2 in [Sh2]. The  case 

n = 4 was t rea ted  in [Ki-Sh2], yielding the ho lomorphy  of the comple ted  Rankin  

tr iple L-funct ions  of GL2 x GL2 x GL2. 

We will look a t  the case when n = 5. When  we take II  to be the Gelbar t  

Jacque t  lift of lr, we obta in  the  L-funct ion L(s, Ada(~r) x 7d). More precisely, let 

G = Spin(10). Then  we have the identification M _~ (GL3 x SL2 x SL2) /{+1} ,  

where - 1  = ( - I 3 , - / 2 , - I 2 ) .  Then  a = (ri ® ww') ® ~r0 ® ~'~ is a cuspidal  

represen ta t ion  of M(A).  Then  by [ShT, Theorem 8.2], 

(4.1) 
! ! 

L ( s , a , , r l )  = L(s,  Ad3(7%) x 7%)L(s ,% z % ) ,  

L(s, av, r2) = L(s, IIv, A 2 ® wvJ,).  

We can prove t h e m  by direct computa t ion  for unramified places. For ramified 

places, we define the  L-funct ion L(s, av, r l )  as in [Shl, section 7]. Recall t ha t  

it is defined to agree complete ly  with Langlands '  definition of L-funct ions when- 
L(~,~,r~) ever there  is a pa ramet r iza t ion .  We define L(s, Ad3(Trv) x 7r~) to be  L(~,,~x~')" 

Therefore  if Ad 3 (Try) exists (i.e., except  for ex t raord inary  supercuspidal  represen- 

ta t ions) ,  L(s,-Ad3(rr.)  × rr;) is a local Rank in -Se lbe rg  L-funct ion for GL4 x GL2. 

Using this,  Shahidi  proved 
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PROPOSITION 4.1 ([Sh7, Theorem 8.2]): Let S be a finite set of places 
including a11 archimedean places such that rv is spherical for v ~ S. Then 

Ls(s,  Ada(Ir) x Id) has a meromorphic continuation to all of C. 

Now we prove 

PROPOSITION 4.2: The normalized intertwining operator N(s, av,wo) is 

holomorphic and non-zero for Re s > ! 
- -  2 "  

Proof." If H .  tempered,  in the language of Lemma 1.4, sO + A0 is in the positive 
1 1 by [Ge-Ja]. Weyl chamber for Res  > ~ since i f %  = 7r(#[ Ir,#l I -r) ,  then r < 

Hence it is enough to check conjecture 7.1 of [Shl]: If H~ is not supercuspidal, 

then in (4.1), the L-functions are L-functions of GLk x GLz and hence conjecture 

7.1 of [Shl] is satisfied. If I I ,  is supercuspidal, then 

L(s, av, r2) = L(s, nv, A 2 ® wvw',,) 

-ajq~, ) ([Shl, Proposition 7.3]) and Proposition 1.1 is of the f o r m  Y I j ( 1  - s  -1 

applies. 
1 G L 3  l a  Suppose H~ is non-tempered. Then II~ = m a  B (#l ® v @ #1 i-a),  where 

it, v are unitary characters and 0 < a < ½. Suppose ~ = 1r(t~l I r,/tl I - r )  and 
1 I f R e s  > 1 ( r + r ' )  > - 1 ,  ' I + , / [  I - + ) ,  0 < r , r '  < _ s a -  71" v ~ 

s -  a -  ( r -  r t) > - 1  and s -  xl > 0. The rank-one operators are either operators 

for SL2 or GL2 and hence they are holomorphic and non-zero. Suppose % or 

is tempered.  If both of them are tempered, in the language of Lemma 1.4, 7/" v 

sO + Ao is in the positive Weyl chamber for Re s > ½ and the rank-one operators  
! 

are in the situation of Proposition 1.1. Now suppose r ,  is non=tempered and 7r v 

is tempered.  The only rank-one operators left to do are for a maximal Levi which 

is isogenous to GL1 x SL2 inside a group whose derived group is SL3,  in which 

case Lemma 2.10 applies, or to GL1 × SL2 inside a group who se derived group 

is Spin(6), in which case Proposition 1.1 applies. 

By Lemma 1.7, the holomorphy of N(s, a,, Wo) for Re s > ½ implies the non- 

vanishing of N(s,  a~, wo) for Re s > ½, since the standard module conjecture is 

valid for a~ and we checked conjecture 7.1 of [Shl] above in our case. II 

LEMMA 4.3: Let lrl, 7r2 be two cuspidal representations of GL2. Let S be the set 

of places where rlv,lr2v are ali tempered. Then _5(S) > s 
- -  T O "  

Proof: Let S~ be the set of places where ~vi~ is tempered for i = 1,2,3. Then 

from [Ram], 5_(Si) >_ 9 for i = 1, 2, 3. Let X be the set of all places. Then 

~(S1 -- $2) ~ ~(X - $2) __~ ~0" We have $1 = ($1 n $2) U ($1 - $2). So 

~(S1  N S 2 )  > 5 (S1)  - ~(S1 - ~2)  > 9__ _ __1 _ 8_ . 
- - -  - -  1 0  1 0 -  1 0 "  
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PROPOSITION 4.4: The Eisenstein series attached to (M, a) is holomorphic for 
Re s > 0 unless (ww') 2 --- 1. 

Proof: Note that  woa ~ a if and only if (wa/) 2 = 1. Hence our proposition 

follows from Corollary 1.6. | 

PROPOSITION 4.5: L(s, or, r2) = L(s, H, A 2 @ ww') has no zeros for Re s > 1. 

Proof'. If (ww~) 2 ¢ 1, then by Proposition 4.4, the Eisenstein series, hence 

M(s, a, wo), is holomorphic for Res  > 0. Then by Corollary 1.6, 

Ls(1 + s, a, r l)Ls(1 + 2s, a, r2) 

has no zeros for Re s > 0. Consider (1.3). Since the unnormalized operators 

A(s, av, wo) are non-zero operators, it follows that 

Ls(s, a, rl)Ls(2s,  a, r2) 

Ls(1 + s, a, r l)Ls(1 + 2s, a, r2) 

is holomorphic for Re s > 

removed in [Shl]), Ls(s,  a, 

2. This implies that  Ls(s,  

0. By [Sh3, Theorem 5.1] (the restriction has been 

ri), i = 1, 2, are holomorphic and non-zero for Res  > 

a, rl)Ls(2s,  a, r2) is holomorphic for Re s > 1, hence 

Ls(s,  a, rl) is holomorphic for Re s > 1. Therefore, Ls(1 + 2s, a, r2) has no zeros 

for Re s > 0. Our assertion follows. 

Suppose (ww') 2 -- 1. If w J  -- 1, then our result follows from Theorem 3.1. 

Let ww' 7~ 1. We give a proof, following [Sh4, Proposition 3.2]. Let E l F  be 

the quadratic extension attached to ww ~ and let E be the base change lift of H 

defined by Arthur and Clozel [A-C]. Then 

Ls ( s ,E ,A  2) -- Ls(s, II, A2)Ls(s,H,A 2 ®ww'). 

By [Sh4, Proposition 3.2], E is cuspidal. Then the left-hand side is non-vanishing 

for Res  > 1 by Corollary 1.6 and LS(s ,H,A 2) is holomorphic for Res  > 0 by 

Theorem 3.1. Hence Ls(s,  H, A 2 @ cOcO t) is non-vanishing for Re s > 1. | 

THEOREM 4.6: L(s, Ad3(zr) x 7r')L(s, ~r x ~r') is holomorphic except possibly at 
s _ - 0 ,  1 ~,1. 

Proof'. By Proposition 4.4, if (ww') 2 ¢ 1, then M(s,a,  wo) is holomorphic 

for Res  > 0. Consider (1.2). By Proposition 4.2, the normalized operators 
1 Hence L(s,a,rl)L(2s,c%v2) N(s,  a,,  wo) have no zeros for Res  > 5" L(1Ws,a,rl)L(l+2s,a,r~) is holomor- 

phic for s > ½. Pick No so large that  L(1 + s, a, r l )L(1 + 2s, a, r2) is holomorphic 
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for s > No. Then  L(s,a, rl)L(2s, a, r2) is holomorphic  for s _> No - 1. Argu- 
1 ing inductively, we see tha t  L(s, a, rl)L(2s, a, r2) is holomorphic  for s > ~. By 

Propos i t ion  4.5, L(2s, a, r2) has no zeros for R e s  > ½. By [Sh4, Propos i t ion  

3.1], L(2s, a, r2) has no zeros for R e s  = ½. Hence L(s,a, rl) is ho lomorphic  for 

Re s > 1, except  possibly at  s = ½. By the functional equat ion,  we see t ha t  
1 L(s, a, rl) is holomorphic,  except  possibly at  s = ~. 

1 By L e m m a  = ' = 1 for places of densi ty  ~. Suppose  (ww') 2 1. Then  cove G 
! 

4.3, there  exists a place where bo th  7r. and 7r. are unramified,  t empered ,  and 

I lr(# I, u'). Then  w~ tzu and  i /~lvl wvw~' = 1. Let  7r. = ~r(#, u) and  rr. = = w~ = 

and  I I .  = 7r(#v -1 ,  1, # - i v ) .  Then  under  the isogeny Spin(10) ~ ) SO10, I(s,  a.)  
corresponds  to an induced representa t ion  

IndS°l° (1 det  rTrt ® ~r2), GL3 X SO4 

where ~rt = Ind~  La (,1 ® r/2 ® r/a), r/2 _-- WvWv #,  2v-2, r/~ = wvw~, r/~ = wvw~Iz-2v 2, 

and 7r2 is the  unique generic componen t  of IndSB°4(r/4 ® r~5), r/42 = # v - l # ' v  '-1, 
rl 2 = lz-lv#~v r-1. Note t ha t  ~rl has the tr ivial  central  character .  By  L e m m a  3.6, 

J(s, av) is not  un i t a ry  if s > ½, s ¢ 1. Therefore  L(s ,  Ad30r)  x zc')L(s,z¢ x zd) 

cannot  have a pole for s > 1, s ~ 1. We now apply  the  funct ional  equat ion.  
| 

= 1  CONJECTURE 4.7: L(s, Ad3(Tr) x 7r') is holomorphic at s 2" 

CONJECTURE 4.8: L(s, Ad3(lr) × 7r') is entire if ~r is not monomial. 
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